Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
J Agric Food Chem ; 55(4): 1205-11, 2007 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-17253712

RESUMO

Populations of bloodroot [Sanguinaria canadensis L. (Papaveraceae)] are found throughout the eastern forests of North America, with particular abundance in the southern Appalachian Mountains. Increasingly, it is finding use in Europe as a nonantibiotic animal feed supplement to promote weight gain. As efforts to cultivate this herb are underway, there is a need to understand the effect of agronomic permutations on both the dry mass rhizome yield and the yield of benzophenanthridine alkaloids. Month-to-month variability of the concentration of the alkaloids sanguinarine and chelerythrine in both cultivated and wildcrafted bloodroot was examined. The alkaloid yield was consistently higher, but more variable, in wildcrafted plants. On average, cultivated rhizomes were both larger and more consistently sized than those that were wildcrafted. The concentration of a suite of trace elements was measured in soil that was collected concomitantly with each plant accession. Differences in element profiles were compared against alkaloid yields.


Assuntos
Benzofenantridinas/análise , Sanguinaria/química , Sanguinaria/crescimento & desenvolvimento , Alcaloides/análise , Isoquinolinas/análise , Rizoma/química , Rizoma/crescimento & desenvolvimento , Solo/análise , Oligoelementos/análise
2.
HortScience ; 40(5): 1239-1242, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16429598

RESUMO

We investigated patterns of variation in alkamides and cichoric acid accumulation in the roots and aboveground parts of Echinacea purpurea (L.) Moench. These phytochemicals were extracted from fresh plant parts with 60% ethanol and quantified by high performance liquid chromatography (HPLC) analysis. Concentrations of alkamides and cichoric acid were measured on a dry-weight basis (mg·g(-1)). For total alkamides, concentrations among individual plants varied from 5.02 to 27.67 (mean = 14.4%) in roots, from 0.62 to 3.42 (mean = 1.54) in nearly matured seed heads (NMSH), and 0.22 to 5.25 (mean = 0.77) in young tops (about ½ flower heads, » leaves, and » stems). For cichoric acid, concentrations among individual plants varied from 2.65 to 37.52 (mean = 8.95), from 2.03 to 31.58 (mean = 10.9), and from 4.79 to 38.55 (mean = 18.88) in the roots, the NMSH, and the tops, respectively. Dodeca-2E, 4E, 8Z, 10E-tetraenoic acid isobutylamide and dodeca-2E, 4E, 8Z, 10Z-tetraenoic acid isobutylamide (alkamides 8/9) accounted for only 9.4% of the total alkamides in roots, but comprised 87.9% in the NMSH, and 76.6% in the young tops. Correlations of concentrations of alkamides or cichoric acid between those of roots and those of the NMSH were not statistically significant, and either within the roots, the NMSH, and the young tops. However, a significant negative correlation was observed between the concentration of cichoric acid in the roots and in young tops, and a significant positive correlation was observed between total alkamide concentration in the roots and cichoric acid concentration in the young tops. These results may be useful in the genetic improvement of E. purpurea for medicinal use.

3.
HortScience ; 40(6): 1843-1845, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16429595

RESUMO

Seed germination patterns were studied in E. purpurea (L.) Moench grouped by seed source, one group of seven lots from commercially cultivated populations and a second group of nine lots regenerated from ex situ conserved wild populations. Germination tests were conducted in a growth chamber in light (40 µmol·m(-2)·s(-1)) or darkness at 25 °C for 20 days after soaking the seeds in water for 10 minutes. Except for two seed lots from wild populations, better germination was observed for commercially cultivated populations in light (90% mean among seed lots, ranging from 82% to 95%) and in darkness (88% mean among seed lots, ranging from 82% to 97%) than for wild populations in light (56% mean among seed lots, ranging from 9% to 92%) or in darkness (37% mean among seed lots, ranging from 4% to 78%). No germination difference was measured between treatments in light and darkness in the commercially cultivated populations, but significant differences were noted for treatments among wild populations. These results suggest that repeated cycles of sowing seeds during cultivation without treatments for dormancy release resulted in reduced seed dormancy in E. purpurea.

4.
Int Immunopharmacol ; 11(11): 1706-14, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21683808

RESUMO

In this study we tested whether the isoquinoline alkaloid berberine can inhibit the growth of influenza A. Our experiments showed strong inhibition of the growth of H1N1 influenza A strains PR/8/34 or WS/33 in RAW 264.7 macrophage-like cells, A549 human lung epithelial-derived cells and murine bone marrow derived macrophages, but not MDCK canine kidney cells. Studies of the mechanism underlying this effect suggest that berberine acts post-translationally to inhibit virus protein trafficking/maturation which in turn inhibits virus growth. Berberine was also evaluated for its ability to inhibit production of TNF-α and PGE(2) from A/PR/8/34 infected-RAW 264.7 cells. Our studies revealed strong inhibition of production of both mediators and suggest that this effect is distinct from the anti-viral effect. Finally, we asked whether berberine-containing ethanol extracts of goldenseal also inhibit the growth of influenza A and production of inflammatory mediators. We found strong effectiveness at high concentrations, although upon dilution extracts were somewhat less effective than purified berberine. Taken together, our results suggest that berberine may indeed be useful for the treatment of infections with influenza A.


Assuntos
Antivirais/farmacologia , Berberina/farmacologia , Hydrastis/química , Fatores Imunológicos/biossíntese , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Antivirais/química , Antivirais/isolamento & purificação , Berberina/química , Técnicas de Cultura de Células , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Humanos , Immunoblotting , Fatores Imunológicos/antagonistas & inibidores , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H1N1/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Proteínas Virais/biossíntese
5.
Int Immunopharmacol ; 10(10): 1268-78, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20674883

RESUMO

The goal of this study was to determine whether extracts and isolated alkylamides from Echinacea purpurea would be useful for prevention of the inflammatory response that accompanies infections with H1N1 influenza A. Seventeen extracts and 4 alkylamides were tested for the ability to inhibit production of cytokines, chemokines, and PGE2 from RAW 264.7 macrophage-like cells infected with the H1N1 influenza A strain PR/8/34. The alkylamides undeca-2Z,4E-diene-8,10-diynic acid isobutylamide, dodeca-2E,4E,8Z,10E/Z-tetraenoic acid isobutylamide, dodeca-2E,4E-dienoic acid isobutylamide, and undeca-2E-ene-8,10-diynoic acid isobutylamide suppressed production of TNF-α and PGE2 from infected cells. Dodeca-2E,4E-dienoic acid isobutylamide was especially effective at inhibiting production of these mediators and also strongly inhibited production of G-CSF, CCL2/MCP-1, CCL3/MIP-1α and CCL5/RANTES. In contrast, the ethanol extracts (75%), which were prepared from dormant roots of E. purpurea grown in different locations throughout North Carolina, displayed a range of effects from suppression to stimulation of mediator production. Precipitation of the extracts with ethanol removed the stimulatory activity, however, even after precipitation; many of the extracts did not display any suppressive activity. Analysis of the extracts revealed slight variations in concentration of alkylamides, caftaric acid, and cichoric acid, but the activity of the extracts did not strongly correlate with concentrations of these compounds. Our in vitro experiments suggest that E. purpurea extracts have the potential for use in alleviating the symptoms and pathology associated with infections with influenza A; however, further study will be necessary to define procedures necessary to unmask the alkylamide activity in crude extracts.


Assuntos
Amidas/química , Amidas/farmacologia , Citocinas/metabolismo , Dinoprostona/metabolismo , Echinacea/química , Vírus da Influenza A/fisiologia , Macrófagos/metabolismo , Macrófagos/virologia , Animais , Ácidos Cafeicos/química , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Estrutura Molecular , North Carolina , Raízes de Plantas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA