Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
J Nat Prod ; 87(4): 849-854, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38416027

RESUMO

Microthecaline A (1), the known antiplasmodial quinoline serrulatane alkaloid from the roots of Eremophila microtheca F. Muell. ex Benth. (Scrophulariaceae), was targeted for isolation and subsequent use in the generation of a semisynthetic ether library. A large-scale extraction and isolation yielded the previously undescribed quinoline serrulatane microthecaline B (2), along with crystalline 1 that enabled the first X-ray crystallographic analysis to be undertaken on this rare alkaloid structure class. The X-ray diffraction analysis of 1 supported the absolute configuration assignment of microthecaline A, which was originally assigned by ECD data analysis. Microthecaline A (1) was converted into 10 new semisynthetic ether derivatives (3-12) using a diverse series of commercially available alkyl halides. Chemical structures of the new serrulatane alkaloid and semisynthetic ether analogues were assigned by spectroscopic and spectrometric analyses. Antiplasmodial evaluations of 1-12 showed that the semisynthetic derivative 5 elicited the most potent activity with an IC50 value of 7.2 µM against Plasmodium falciparum 3D7 (drug-sensitive) strain.


Assuntos
Alcaloides , Antimaláricos , Plasmodium falciparum , Antimaláricos/farmacologia , Antimaláricos/química , Antimaláricos/isolamento & purificação , Alcaloides/farmacologia , Alcaloides/química , Alcaloides/isolamento & purificação , Plasmodium falciparum/efeitos dos fármacos , Estrutura Molecular , Eremophila (Planta)/química , Cristalografia por Raios X , Quinolinas/farmacologia , Quinolinas/química , Raízes de Plantas/química , Éteres/farmacologia , Éteres/química
2.
Mar Drugs ; 22(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38248658

RESUMO

The known oxygenated polyhalogenated diphenyl ether, 2-(2',4'-dibromophenoxy)-3,5-dibromophenol (1), with previously reported activity in multiple cytotoxicity assays was isolated from the sponge Lamellodysidea sp. and proved to be an amenable scaffold for semisynthetic library generation. The phenol group of 1 was targeted to generate 12 ether analogues in low-to-excellent yields, and the new library was fully characterized by NMR, UV, and MS analyses. The chemical structures for 2, 8, and 9 were additionally determined via single-crystal X-ray diffraction analysis. All natural and semisynthetic compounds were evaluated for their ability to inhibit the growth of DU145, LNCaP, MCF-7, and MDA-MB-231 cancer cell lines. Compound 3 was shown to have near-equivalent activity compared to scaffold 1 in two in vitro assays, and the activity of the compounds with an additional benzyl ring appeared to be reliant on the presence and position of additional halogens.


Assuntos
Antineoplásicos , Éter , Éteres/farmacologia , Etil-Éteres , Éteres Fenílicos/farmacologia , Antineoplásicos/farmacologia
3.
Nat Prod Rep ; 40(2): 275-325, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36786022

RESUMO

Covering: January to December 2021This review covers the literature published in 2021 for marine natural products (MNPs), with 736 citations (724 for the period January to December 2021) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1425 in 416 papers for 2021), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of the number of authors, their affiliations, domestic and international collection locations, focus of MNP studies, citation metrics and journal choices is discussed.


Assuntos
Produtos Biológicos , Cnidários , Animais , Produtos Biológicos/química , Biologia Marinha , Estrutura Molecular , Cnidários/química , Equinodermos/química , Organismos Aquáticos
4.
Antimicrob Agents Chemother ; 67(4): e0160022, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36975214

RESUMO

Despite effective combination antiretroviral therapy (cART), people living with HIV (PLWH) continue to harbor replication-competent and transcriptionally active virus in infected cells, which in turn can lead to ongoing viral antigen production, chronic inflammation, and increased risk of age-related comorbidities. To identify new agents that may inhibit postintegration HIV beyond cART, we screened a library of 512 pure compounds derived from natural products and identified (-)-hopeaphenol as an inhibitor of HIV postintegration transcription at low to submicromolar concentrations without cytotoxicity. Using a combination of global RNA sequencing, plasmid-based reporter assays, and enzyme activity studies, we document that hopeaphenol inhibits protein kinase C (PKC)- and downstream NF-κB-dependent HIV transcription as well as a subset of PKC-dependent T-cell activation markers, including interleukin-2 (IL-2) cytokine and CD25 and HLA-DRB1 RNA production. In contrast, it does not substantially inhibit the early PKC-mediated T-cell activation marker CD69 production of IL-6 or NF-κB signaling induced by tumor necrosis factor alpha (TNF-α). We further show that hopeaphenol can inhibit cyclin-dependent kinase 9 (CDK9) enzymatic activity required for HIV transcription. Finally, it inhibits HIV replication in peripheral blood mononuclear cells (PBMCs) infected in vitro and dampens viral reactivation in CD4+ cells from PLWH. Our study identifies hopeaphenol as a novel inhibitor that targets a subset of PKC-mediated T-cell activation pathways in addition to CDK9 to block HIV expression. Hopeaphenol-based therapies could complement current antiretroviral therapy otherwise not targeting cell-associated HIV RNA and residual antigen production in PLWH.


Assuntos
Infecções por HIV , Estilbenos , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Proteína Quinase C/genética , Quinase 9 Dependente de Ciclina/metabolismo , Leucócitos Mononucleares/metabolismo , Replicação Viral , Latência Viral , Estilbenos/farmacologia , Infecções por HIV/metabolismo , RNA
5.
J Nat Prod ; 86(3): 557-565, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36799121

RESUMO

The known Eremophila microtheca-derived diterpenoid 3,7,8-trihydroxyserrulat-14-en-19-oic acid (1) was targeted for large-scale purification, as this bioactive plant compound has proven to be an attractive scaffold for semisynthetic studies and subsequent library generation. Compound 1 was converted to a selectively protected trimethyl derivative, 3-hydroxy-7,8-dimethoxyserrulat-14-en-19-oic acid methyl ester (2), using simple and rapid methylation conditions. The resulting scaffold 2 was reacted with a diverse series of commercially available isocyanates to generate an 11-membered carbamate-based library. The chemical structures of the 11 new semisynthetic analogues were fully characterized by spectroscopic and spectrometric analysis. All natural products and semisynthetic compounds were evaluated for their anthelmintic, antimalarial, and anti-HIV activities. Compound 3 was shown to elicit the greatest antiplasmodial activity of all compounds tested, with IC50 values of 4.6 and 11.6 µM against Plasmodium falciparum 3D7 and Dd2, respectively. Compound 11 showed the greatest inhibition of development to fourth-stage Haemonchus contortus larvae (L4) and induction of a skinny (Ski) phenotype (67.5% of nematodes) at 50 µM. Compound 7, which inhibited 59.0% of HIV production at 100 µg/mL, was the carbamate analogue that displayed the best antiviral activity.


Assuntos
Anti-Infecciosos , Antimaláricos , Produtos Biológicos , Carbamatos , Extratos Vegetais/química , Antimaláricos/farmacologia , Antimaláricos/química , Produtos Biológicos/química , Plasmodium falciparum
6.
Biofouling ; 39(8): 775-784, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37822262

RESUMO

In the current study we investigate the antifouling potential of three polyphenolic resveratrol multimers (-)-hopeaphenol, vaticanol B and vatalbinoside A, isolated from two species of Anisoptera found in the Papua New Guinean rainforest. The compounds were evaluated against the growth and settlement of eight marine microfoulers and against the settlement and metamorphosis of Amphibalanus improvisus barnacle cyprids. The two isomeric compounds (-)-hopeaphenol and vaticanol B displayed a high inhibitory potential against the cyprid larvae metamorphosis at 2.8 and 1.1 µM. (-)-Hopeaphenol was also shown to be a strong inhibitor of both microalgal and bacterial adhesion at submicromolar concentrations with low toxicity. Resveratrol displayed a lower antifouling activity compared to the multimers and had higher off target toxicity against MCR-5 fibroblasts. This study illustrates the potential of natural products as a valuable source for the discovery of novel antifouling leads with low toxicity.


Assuntos
Biofilmes , Thoracica , Animais , Resveratrol/farmacologia , Fenóis
7.
Mar Drugs ; 21(5)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37233511

RESUMO

The incorporation of bromine, iodine or fluorine into the tricyclic core structure of thiaplakortone A (1), a potent antimalarial marine natural product, is reported. Although yields were low, it was possible to synthesise a small nine-membered library using the previously synthesised Boc-protected thiaplakortone A (2) as a scaffold for late-stage functionalisation. The new thiaplakortone A analogues (3-11) were generated using N-bromosuccinimide, N-iodosuccinimide or a Diversinate™ reagent. The chemical structures of all new analogues were fully characterised by 1D/2D NMR, UV, IR and MS data analyses. All compounds were evaluated for their antimalarial activity against Plasmodium falciparum 3D7 (drug-sensitive) and Dd2 (drug-resistant) strains. Incorporation of halogens at positions 2 and 7 of the thiaplakortone A scaffold was shown to reduce antimalarial activity compared to the natural product. Of the new compounds, the mono-brominated analogue (compound 5) displayed the best antimalarial activity with IC50 values of 0.559 and 0.058 µM against P. falciparum 3D7 and Dd2, respectively, with minimal toxicity against a human cell line (HEK293) observed at 80 µM. Of note, the majority of the halogenated compounds showed greater efficacy against the P. falciparum drug-resistant strain.


Assuntos
Antimaláricos , Produtos Biológicos , Malária Falciparum , Humanos , Antimaláricos/farmacologia , Antimaláricos/química , Células HEK293 , Triazinas/química , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum , Produtos Biológicos/química
8.
Int J Mol Sci ; 24(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37373352

RESUMO

Pseudomonas aeruginosa forms stable biofilms, providing a major barrier for multiple classes of antibiotics and severely impairing treatment of infected patients. The biofilm matrix of this Gram-negative bacterium is primarily composed of three major exopolysaccharides: alginate, Psl, and Pel. Here, we studied the antibiofilm properties of sponge-derived natural products ianthelliformisamines A-C and their combinations with clinically used antibiotics. Wild-type P. aeruginosa strain and its isogenic exopolysaccharide-deficient mutants were employed to determine the interference of the compounds with biofilm matrix components. We identified that ianthelliformisamines A and B worked synergistically with ciprofloxacin to kill planktonic and biofilm cells. Ianthelliformisamines A and B reduced the minimum inhibitory concentration (MIC) of ciprofloxacin to 1/3 and 1/4 MICs, respectively. In contrast, ianthelliformisamine C (MIC = 53.1 µg/mL) alone exhibited bactericidal effects dose-dependently on both free-living and biofilm populations of wild-type PAO1, PAO1ΔpslA (Psl deficient), PDO300 (alginate overproducing and mimicking clinical isolates), and PDO300Δalg8 (alginate deficient). Interestingly, the biofilm of the clinically relevant mucoid variant PDO300 was more susceptible to ianthelliformisamine C than strains with impaired polysaccharide synthesis. Ianthelliformisamines exhibited low cytotoxicity towards HEK293 cells in the resazurin viability assay. Mechanism of action studies showed that ianthelliformisamine C inhibited the efflux pump of P. aeruginosa. Metabolic stability analyses indicated that ianthelliformisamine C is stable and ianthelliformisamines A and B are rapidly degraded. Overall, these findings suggest that the ianthelliformisamine chemotype could be a promising candidate for the treatment of P. aeruginosa biofilms.


Assuntos
Poríferos , Pseudomonas aeruginosa , Animais , Humanos , Células HEK293 , Biofilmes , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Ciprofloxacina/farmacologia , Ciprofloxacina/metabolismo , Alginatos/farmacologia , Alginatos/metabolismo
9.
Int J Mol Sci ; 24(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37894784

RESUMO

Idiopathic pulmonary fibrosis (IPF) is the most common and lethal form of the interstitial pneumonias. The cause of the disease is unknown, and new therapies that stop or reverse disease progression are desperately needed. Recent advances in next-generation sequencing have led to an abundance of freely available, clinically relevant, organ-and-disease-specific, single-cell transcriptomic data, including studies from patients with IPF. We mined data from published IPF data sets and identified gene signatures delineating pro-fibrotic or antifibrotic macrophages and then used the Enrichr platform to identify compounds with the potential to drive the macrophages toward the antifibrotic transcriptotype. We then began testing these compounds in a novel in vitro phenotypic drug screening assay utilising human lung macrophages recovered from whole-lung lavage of patients with silicosis. As predicted by the Enrichr tool, glitazones potently modulated macrophage gene expression towards the antifibrotic phenotype. Next, we assayed a subset of the NatureBank pure compound library and identified the cyclobutane lignan, endiandrin A, which was isolated from the roots of the endemic Australian rainforest plant, Endiandra anthropophagorum, with a similar antifibrotic potential to the glitazones. These methods open new avenues of exploration to find treatments for lung fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Tiazolidinedionas , Humanos , Austrália , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Macrófagos/metabolismo , Tiazolidinedionas/uso terapêutico
10.
Beilstein J Org Chem ; 19: 107-114, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761470

RESUMO

Nine new fluorinated analogues were synthesised by late-stage functionalisation using Diversinate™ chemistry on the Open Source Malaria (OSM) triazolopyrazine scaffold (Series 4). The structures of all analogues were fully characterised by NMR, UV and MS data analysis; three triazolopyrazines were confirmed by X-ray crystal structure analysis. The inhibitory activity of all compounds against the growth of the malaria parasite Plasmodium falciparum (3D7 and Dd2 strains) and the cytotoxicity against a human embryonic kidney (HEK293) cell line were tested. Some of the compounds demonstrated moderate antimalarial activity with IC50 values ranging from 0.2 to >80 µM; none of the compounds displayed any cytotoxicity against HEK293 cells at 80 µM. Antimalarial activity was significantly reduced when C-8 of the triazolopyrazine scaffold was substituted with CF3 and CF2H moieties, whereas incorporation of a CF2Me group at the same position completely abolished antiplasmodial effects.

11.
Nat Prod Rep ; 39(6): 1122-1171, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35201245

RESUMO

Covering: 2020This review covers the literature published in 2020 for marine natural products (MNPs), with 757 citations (747 for the period January to December 2020) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1407 in 420 papers for 2020), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. A meta analysis of bioactivity data relating to new MNPs reported over the last five years is also presented.


Assuntos
Produtos Biológicos , Briozoários , Cnidários , Animais , Organismos Aquáticos , Produtos Biológicos/química , Briozoários/química , Cnidários/química , Biologia Marinha , Estrutura Molecular
12.
J Nat Prod ; 85(7): 1723-1729, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35727327

RESUMO

High-throughput screening of the NatureBank marine extract library (7616 samples) identified an extract derived from the Australian marine sponge Phyllospongia bergquistae with activity against Hemonchus contortus (barber's pole worm), an economically important parasitic nematode. Bioassay-guided fractionation of the CH2Cl2/MeOH extract from P. bergquistae led to the purification of four known bishomoscalarane sesterterpenes, phyllolactones A-D (1-4). The absolute configurations of phyllolactones B (2) and C (3) were determined by single-crystal X-ray diffraction analysis; literature and data analyses revealed the need for these chemical structures to be revised. Compounds 2-4 induced a lethal, skinny (Ski) phenotype in larvae of H. contortus at concentrations between 5.3 and 10.1 µM. These data indicate that the bishomoscalarane sesterterpene structure class warrants further investigation for nematocidal or nematostatic activity.


Assuntos
Anti-Helmínticos , Poríferos , Animais , Anti-Helmínticos/farmacologia , Austrália , Estrutura Molecular , Extratos Vegetais , Poríferos/química , Sesterterpenos/farmacologia
13.
Beilstein J Org Chem ; 18: 1544-1552, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36474969

RESUMO

In order to further expand the NatureBank open access compound library, chemical investigations of the Australian marine sponge, Ianthella basta, were undertaken since UHPLC-MS analysis of the extract from this sponge indicated the presence of a new alkaloid. Large-scale extraction and mass-directed isolation studies on the CH2Cl2/MeOH I. basta extract resulted in the purification of a new bromotyrosine-derived alkaloid, 5-debromopurealidin H (1), along with the known marine natural product, ianthesine E (2). The chemical structure of the new compound was determined following detailed spectroscopic and spectrometric data analysis. These two compounds (1 and 2) along with seven previously reported marine bromotyrosine alkaloids from the NatureBank open access library, which included psammaplysins F (3) and H (4), bastadins 4 (5), 8 (6) and 13 (7), aerothionin (8) and hexadellin A (9), were evaluated for their nematocidal activity against exsheathed third-stage larvae of Haemonchus contortus, a highly pathogenic parasite of ruminants. Of the nine compounds, bastadin 8 (6), hexadellin A (9) and bastadin 4 (5) showed inhibition towards larval motility after 72 h of exposure with IC50 values of 1.6 µM, 10.0 µM and 33.3 µM, respectively.

14.
Nat Prod Rep ; 38(2): 362-413, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33570537

RESUMO

This review covers the literature published in 2019 for marine natural products (MNPs), with 719 citations (701 for the period January to December 2019) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 440 papers for 2019), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Methods used to study marine fungi and their chemical diversity have also been discussed.


Assuntos
Organismos Aquáticos/química , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Animais , Bactérias/química , Briozoários/química , Cnidários/química , Equinodermos/química , Fungos/química , Estrutura Molecular , Moluscos/química , Fitoplâncton/química , Rodófitas/química , Urocordados/química , Áreas Alagadas
15.
Antimicrob Agents Chemother ; 65(12): e0077221, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34543092

RESUMO

Antivirals are urgently needed to combat the global SARS-CoV-2/COVID-19 pandemic, supplement existing vaccine efforts, and target emerging SARS-CoV-2 variants of concern. Small molecules that interfere with binding of the viral spike receptor binding domain (RBD) to the host angiotensin-converting enzyme II (ACE2) receptor may be effective inhibitors of SARS-CoV-2 cell entry. Here, we screened 512 pure compounds derived from natural products using a high-throughput RBD/ACE2 binding assay and identified (-)-hopeaphenol, a resveratrol tetramer, in addition to vatalbinoside A and vaticanol B, as potent and selective inhibitors of RBD/ACE2 binding and viral entry. For example, (-)-hopeaphenol disrupted RBD/ACE2 binding with a 50% inhibitory concentration (IC50) of 0.11 µM, in contrast to an IC50 of 28.3 µM against the unrelated host ligand/receptor binding pair PD-1/PD-L1 (selectivity index, 257.3). When assessed against the USA-WA1/2020 variant, (-)-hopeaphenol also inhibited entry of a VSVΔG-GFP reporter pseudovirus expressing SARS-CoV-2 spike into ACE2-expressing Vero-E6 cells and in vitro replication of infectious virus in cytopathic effect and yield reduction assays (50% effective concentrations [EC50s], 10.2 to 23.4 µM) without cytotoxicity and approaching the activities of the control antiviral remdesivir (EC50s, 1.0 to 7.3 µM). Notably, (-)-hopeaphenol also inhibited two emerging variants of concern, B.1.1.7/Alpha and B.1.351/Beta in both viral and spike-containing pseudovirus assays with similar or improved activities over the USA-WA1/2020 variant. These results identify (-)-hopeaphenol and related stilbenoid analogues as potent and selective inhibitors of viral entry across multiple SARS-CoV-2 variants of concern.


Assuntos
COVID-19 , Estilbenos , Humanos , Pandemias , Fenóis , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo
16.
Biometals ; 34(4): 855-866, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33913062

RESUMO

Iron is an essential component for multiple biological processes. Its regulation within the body is thus tightly controlled. Dysregulation of iron levels within the body can result in several disorders associated with either excess iron accumulation, including haemochromatosis and thalassaemia, or iron deficiency. In cases of excess body iron, therapy involves depleting body iron levels either by venesection, typically for haemochromatosis, or using iron chelators for thalassemia. However, the current chelation options for people with iron overload are limited, with only three iron chelators approved for clinical use. This presents an opportunity for improved therapeutics to be identified and developed. The aim of this study was to examine multiple compounds from within the Davis open access natural product-based library (512 compounds) for their ability to chelate iron. In silico analysis of this library initially identified nine catechol-containing compounds and two closely related compounds. These compounds were subsequently screened using an in vitro DNA breakage assay and their ability to chelate biological iron was also examined in an iron-loaded hepatocyte cellular assay. Toxicity was assessed in hepatocyte and breast cancer cell lines. One compound, RAD362 [N-(3-aminopropyl)-3,4-dihydroxybenzamide] was able to protect against DNA damage, likely through the prevention of free radicals generated via the Fenton reaction; RAD362 treatment resulted in decreased ferritin protein levels in iron-loaded hepatocytes. Lastly, RAD362 resulted in significantly less cell death than the commonly used iron chelator deferoxamine. This is the first study to identify compound RAD362 as an iron chelator and potential therapeutic.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Catecóis/farmacologia , Quelantes de Ferro/farmacologia , Antineoplásicos/química , Produtos Biológicos/química , Catecóis/química , Proliferação de Células/efeitos dos fármacos , Quebras de DNA , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Quelantes de Ferro/química , Células Tumorais Cultivadas
17.
Mar Drugs ; 19(12)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34940697

RESUMO

High-throughput screening of the NatureBank marine extract library (n = 7616) using a phenotypic assay for the parasitic nematode Haemonchus contortus identified an active extract derived from the Australian marine sponge Citronia sp. Bioassay-guided fractionation of the CH2Cl2/MeOH extract from Citronia sp. resulted in the purification of two known hexachlorinated peptides, dysidenin (1) and dysideathiazole (2). Compound 1 inhibited the growth/development of H. contortus larvae and induced multiple phenotypic changes, including a lethal evisceration (Evi) phenotype and/or somatic cell and tissue destruction. This is the first report of anthelmintic activity for these rare and unique polychlorinated peptides.


Assuntos
Antinematódeos/farmacologia , Haemonchus/efeitos dos fármacos , Poríferos , Tiazóis/farmacologia , Animais , Antinematódeos/química , Organismos Aquáticos , Ensaios de Triagem em Larga Escala , Larva/efeitos dos fármacos , Tiazóis/química
18.
Molecules ; 26(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919319

RESUMO

A radical approach to late-stage functionalization using photoredox and Diversinate™ chemistry on the Open Source Malaria (OSM) triazolopyrazine scaffold (Series 4) resulted in the synthesis of 12 new analogues, which were characterized by NMR, UV, and MS data analysis. The structures of four triazolopyrazines were confirmed by X-ray crystal structure analysis. Several minor and unexpected side products were generated during these studies, including two resulting from a possible disproportionation reaction. All compounds were tested for their ability to inhibit the growth of the malaria parasite Plasmodium falciparum (3D7 and Dd2 strains) and for cytotoxicity against a human embryonic kidney (HEK293) cell line. Moderate antimalarial activity was observed for some of the compounds, with IC50 values ranging from 0.3 to >20 µM; none of the compounds displayed any toxicity against HEK293 at 80 µM.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Técnicas de Química Sintética , Pirazinas/química , Pirazinas/farmacologia , Álcoois/química , Antimaláricos/síntese química , Cristalografia por Raios X , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Testes de Sensibilidade Parasitária , Plasmodium falciparum/efeitos dos fármacos , Pirazinas/síntese química , Relação Estrutura-Atividade
19.
Molecules ; 26(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34641389

RESUMO

Widespread resistance in parasitic nematodes to most classes of anthelmintic drugs demands the discovery and development of novel compounds with distinct mechanisms of action to complement strategic or integrated parasite control programs. Products from nature-which assume a diverse 'chemical space'-have significant potential as a source of anthelmintic compounds. In the present study, we screened a collection of extracts (n = 7616) derived from marine invertebrates sampled from Australian waters in a high throughput bioassay for in vitro anti-parasitic activity against the barber's pole worm (Haemonchus contortus)-an economically important parasitic nematode of livestock animals. In this high throughput screen (HTS), we identified 58 active extracts that reduced larval motility by ≥70% (at 90 h), equating to an overall 'hit rate' of ~0.8%. Of these 58 extracts, 16 also inhibited larval development by ≥80% (at 168 h) and/or induced 'non-wild-type' (abnormal) larval phenotypes with reference to 'wild-type' (normal) larvae not exposed to extract (negative controls). Most active extracts (54 of 58) originated from sponges, three from chordates (tunicates) and one from a coral; these extracts represented 37 distinct species/taxa of 23 families. An analysis of samples by 1H NMR fingerprinting was utilised to dereplicate hits and to prioritise a set of 29 sponge samples for future chemical investigation. Overall, these results indicate that a range of sponge species from Australian waters represents a rich source of natural compounds with nematocidal or nematostatic properties. Our plan now is to focus on in-depth chemical investigations of the sample set prioritised herein.


Assuntos
Anti-Helmínticos/farmacologia , Hemoncose/tratamento farmacológico , Haemonchus/crescimento & desenvolvimento , Poríferos/química , Extratos de Tecidos/farmacologia , Animais , Anti-Helmínticos/isolamento & purificação , Hemoncose/parasitologia , Haemonchus/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Extratos de Tecidos/isolamento & purificação
20.
Nat Prod Rep ; 37(2): 175-223, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32025684

RESUMO

This review covers the literature published between January and December in 2018 for marine natural products (MNPs), with 717 citations (706 for the period January to December 2018) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1554 in 469 papers for 2018), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. The proportion of MNPs assigned absolute configuration over the last decade is also surveyed.


Assuntos
Organismos Aquáticos/química , Produtos Biológicos/química , Animais , Bactérias/química , Briozoários/química , Cnidários/química , Dinoflagellida/química , Equinodermos/química , Fungos/química , Estrutura Molecular , Moluscos/química , Fitoplâncton/química , Rodófitas/química , Urocordados/química , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA