Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Mult Scler ; 30(6): 674-686, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38646958

RESUMO

BACKGROUND: Optic neuritis (ON) is a common feature of inflammatory demyelinating diseases (IDDs) such as multiple sclerosis (MS), aquaporin 4-antibody neuromyelitis optica spectrum disorder (AQP4 + NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). However, the involvement of the optic chiasm (OC) in IDD has not been fully investigated. AIMS: To examine OC differences in non-acute IDD patients with (ON+) and without ON (ON-) using magnetisation transfer ratio (MTR), to compare differences between MS, AQP4 + NMOSD and MOGAD and understand their associations with other neuro-ophthalmological markers. METHODS: Twenty-eight relapsing-remitting multiple sclerosis (RRMS), 24 AQP4 + NMOSD, 28 MOGAD patients and 32 healthy controls (HCs) underwent clinical evaluation, MRI and optical coherence tomography (OCT) scan. Multivariable linear regression models were applied. RESULTS: ON + IDD patients showed lower OC MTR than HCs (28.87 ± 4.58 vs 31.65 ± 4.93; p = 0.004). When compared with HCs, lower OC MTR was found in ON + AQP4 + NMOSD (28.55 ± 4.18 vs 31.65 ± 4.93; p = 0.020) and MOGAD (28.73 ± 4.99 vs 31.65 ± 4.93; p = 0.007) and in ON- AQP4 + NMOSD (28.37 ± 7.27 vs 31.65 ± 4.93; p = 0.035). ON+ RRMS had lower MTR than ON- RRMS (28.87 ± 4.58 vs 30.99 ± 4.76; p = 0.038). Lower OC MTR was associated with higher number of ON (regression coefficient (RC) = -1.15, 95% confidence interval (CI) = -1.819 to -0.490, p = 0.001), worse visual acuity (RC = -0.026, 95% CI = -0.041 to -0.011, p = 0.001) and lower peripapillary retinal nerve fibre layer (pRNFL) thickness (RC = 1.129, 95% CI = 0.199 to 2.059, p = 0.018) when considering the whole IDD group. CONCLUSION: OC microstructural damage indicates prior ON in IDD and is linked to reduced vision and thinner pRNFL.


Assuntos
Aquaporina 4 , Autoanticorpos , Esclerose Múltipla Recidivante-Remitente , Glicoproteína Mielina-Oligodendrócito , Neuromielite Óptica , Quiasma Óptico , Tomografia de Coerência Óptica , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Aquaporina 4/imunologia , Autoanticorpos/sangue , Imageamento por Ressonância Magnética , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/imunologia , Esclerose Múltipla Recidivante-Remitente/patologia , Glicoproteína Mielina-Oligodendrócito/imunologia , Neuromielite Óptica/imunologia , Neuromielite Óptica/diagnóstico por imagem , Neuromielite Óptica/patologia , Quiasma Óptico/patologia , Quiasma Óptico/diagnóstico por imagem , Neurite Óptica/imunologia , Neurite Óptica/diagnóstico por imagem , Neurite Óptica/patologia , Adulto Jovem
2.
J Magn Reson Imaging ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37787109

RESUMO

BACKGROUND: 1 H-magnetic resonance spectroscopy (1 H-MRS) may provide a direct index for the testing of medicines for neuroprotection and drug mechanisms in multiple sclerosis (MS) through measures of total N-acetyl-aspartate (tNAA), total creatine (tCr), myo-inositol (mIns), total-choline (tCho), and glutamate + glutamine (Glx). Neurometabolites may be associated with clinical disability with evidence that baseline neuroaxonal integrity is associated with upper limb function and processing speed in secondary progressive MS (SPMS). PURPOSE: To assess the effect on neurometabolites from three candidate drugs after 96-weeks as seen by 1 H-MRS and their association with clinical disability in SPMS. STUDY-TYPE: Longitudinal. POPULATION: 108 participants with SPMS randomized to receive neuroprotective drugs amiloride [mean age 55.4 (SD 7.4), 61% female], fluoxetine [55.6 (6.6), 71%], riluzole [54.6 (6.3), 68%], or placebo [54.8 (7.9), 67%]. FIELD STRENGTH/SEQUENCE: 3-Tesla. Chemical-shift-imaging 2D-point-resolved-spectroscopy (PRESS), 3DT1. ASSESSMENT: Brain metabolites in normal appearing white matter (NAWM) and gray matter (GM), brain volume, lesion load, nine-hole peg test (9HPT), and paced auditory serial addition test were measured at baseline and at 96-weeks. STATISTICAL TESTS: Paired t-test was used to analyze metabolite changes in the placebo arm over 96-weeks. Metabolite differences between treatment arms and placebo; and associations between baseline metabolites and upper limb function/information processing speed at 96-weeks assessed using multiple linear regression models. P-value<0.05 was considered statistically significant. RESULTS: In the placebo arm, tCho increased in GM (mean difference = -0.32 IU) but decreased in NAWM (mean difference = 0.13 IU). Compared to placebo, in the fluoxetine arm, mIns/tCr was lower (ß = -0.21); in the riluzole arm, GM Glx (ß = -0.25) and Glx/tCr (ß = -0.29) were reduced. Baseline tNAA(ß = 0.22) and tNAA/tCr (ß = 0.23) in NAWM were associated with 9HPT scores at 96-weeks. DATA CONCLUSION: 1 H-MRS demonstrated altered membrane turnover over 96-weeks in the placebo group. It also distinguished changes in neuro-metabolites related to gliosis and glutaminergic transmission, due to fluoxetine and riluzole, respectively. Data show tNAA is a potential marker for upper limb function. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 4.

3.
Eur J Neurol ; 30(9): 2769-2780, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37318885

RESUMO

BACKGROUND AND PURPOSE: There is increasing evidence that cardiovascular risk (CVR) contributes to disability progression in multiple sclerosis (MS). CVR is particularly prevalent in secondary progressive MS (SPMS) and can be quantified through validated composite CVR scores. The aim was to examine the cross-sectional relationships between excess modifiable CVR, whole and regional brain atrophy on magnetic resonance imaging, and disability in patients with SPMS. METHODS: Participants had SPMS, and data were collected at enrolment into the MS-STAT2 trial. Composite CVR scores were calculated using the QRISK3 software. Prematurely achieved CVR due to modifiable risk factors was expressed as QRISK3 premature CVR, derived through reference to the normative QRISK3 dataset and expressed in years. Associations were determined with multiple linear regressions. RESULTS: For the 218 participants, mean age was 54 years and median Expanded Disability Status Scale was 6.0. Each additional year of prematurely achieved CVR was associated with a 2.7 mL (beta coefficient; 95% confidence interval 0.8-4.7; p = 0.006) smaller normalized whole brain volume. The strongest relationship was seen for the cortical grey matter (beta coefficient 1.6 mL per year; 95% confidence interval 0.5-2.7; p = 0.003), and associations were also found with poorer verbal working memory performance. Body mass index demonstrated the strongest relationships with normalized brain volumes, whilst serum lipid ratios demonstrated strong relationships with verbal and visuospatial working memory performance. CONCLUSIONS: Prematurely achieved CVR is associated with lower normalized brain volumes in SPMS. Future longitudinal analyses of this clinical trial dataset will be important to determine whether CVR predicts future disease worsening.


Assuntos
Doenças Cardiovasculares , Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Humanos , Pessoa de Meia-Idade , Esclerose Múltipla/patologia , Esclerose Múltipla Crônica Progressiva/diagnóstico por imagem , Esclerose Múltipla Crônica Progressiva/patologia , Doenças Cardiovasculares/diagnóstico por imagem , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Estudos Transversais , Fatores de Risco , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Memória de Curto Prazo , Fatores de Risco de Doenças Cardíacas , Atrofia/patologia , Avaliação da Deficiência , Progressão da Doença , Fator de Transcrição STAT2
4.
Magn Reson Med ; 82(3): 1025-1040, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31081239

RESUMO

PURPOSE: To enable clinical applications of quantitative magnetization transfer (qMT) imaging by developing a fast method to map one of its fundamental model parameters, the bound pool fraction (BPF), in the human brain. THEORY AND METHODS: The theory of steady-state MT in the fast-exchange approximation is used to provide measurements of BPF, and bound pool transverse relaxation time ( T2B ). A sequence that allows sampling of the signal during steady-state MT saturation is used to perform BPF mapping with a 10-min-long fully echo planar imaging-based MRI protocol, including inversion recovery T1 mapping and B1 error mapping. The approach is applied in 6 healthy subjects and 1 multiple sclerosis patient, and validated against a single-slice full qMT reference acquisition. RESULTS: BPF measurements are in agreement with literature values using off-resonance MT, with average BPF of 0.114(0.100-0.128) in white matter and 0.068(0.054-0.085) in gray matter. Median voxel-wise percentage error compared with standard single slice qMT is 4.6%. Slope and intercept of linear regression between new and reference BPF are 0.83(0.81-0.85) and 0.013(0.11-0.16). Bland-Altman plot mean bias is 0.005. In the multiple sclerosis case, the BPF is sensitive to pathological changes in lesions. CONCLUSION: The method developed provides accurate BPF estimates and enables shorter scan time compared with currently available approaches, demonstrating the potential of bringing myelin sensitive measurement closer to the clinic.


Assuntos
Imagem Ecoplanar/métodos , Interpretação de Imagem Assistida por Computador/métodos , Encéfalo/diagnóstico por imagem , Humanos , Esclerose Múltipla/diagnóstico por imagem , Bainha de Mielina/química
5.
Ann Neurol ; 83(2): 210-222, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29331092

RESUMO

OBJECTIVE: Gray matter (GM) atrophy occurs in all multiple sclerosis (MS) phenotypes. We investigated whether there is a spatiotemporal pattern of GM atrophy that is associated with faster disability accumulation in MS. METHODS: We analyzed 3,604 brain high-resolution T1-weighted magnetic resonance imaging scans from 1,417 participants: 1,214 MS patients (253 clinically isolated syndrome [CIS], 708 relapsing-remitting [RRMS], 128 secondary-progressive [SPMS], and 125 primary-progressive [PPMS]), over an average follow-up of 2.41 years (standard deviation [SD] = 1.97), and 203 healthy controls (HCs; average follow-up = 1.83 year; SD = 1.77), attending seven European centers. Disability was assessed with the Expanded Disability Status Scale (EDSS). We obtained volumes of the deep GM (DGM), temporal, frontal, parietal, occipital and cerebellar GM, brainstem, and cerebral white matter. Hierarchical mixed models assessed annual percentage rate of regional tissue loss and identified regional volumes associated with time-to-EDSS progression. RESULTS: SPMS showed the lowest baseline volumes of cortical GM and DGM. Of all baseline regional volumes, only that of the DGM predicted time-to-EDSS progression (hazard ratio = 0.73; 95% confidence interval, 0.65, 0.82; p < 0.001): for every standard deviation decrease in baseline DGM volume, the risk of presenting a shorter time to EDSS worsening during follow-up increased by 27%. Of all longitudinal measures, DGM showed the fastest annual rate of atrophy, which was faster in SPMS (-1.45%), PPMS (-1.66%), and RRMS (-1.34%) than CIS (-0.88%) and HCs (-0.94%; p < 0.01). The rate of temporal GM atrophy in SPMS (-1.21%) was significantly faster than RRMS (-0.76%), CIS (-0.75%), and HCs (-0.51%). Similarly, the rate of parietal GM atrophy in SPMS (-1.24-%) was faster than CIS (-0.63%) and HCs (-0.23%; all p values <0.05). Only the atrophy rate in DGM in patients was significantly associated with disability accumulation (beta = 0.04; p < 0.001). INTERPRETATION: This large, multicenter and longitudinal study shows that DGM volume loss drives disability accumulation in MS, and that temporal cortical GM shows accelerated atrophy in SPMS than RRMS. The difference in regional GM atrophy development between phenotypes needs to be taken into account when evaluating treatment effect of therapeutic interventions. Ann Neurol 2018;83:210-222.


Assuntos
Encéfalo/patologia , Substância Cinzenta/patologia , Esclerose Múltipla/patologia , Adulto , Atrofia/patologia , Encéfalo/diagnóstico por imagem , Avaliação da Deficiência , Progressão da Doença , Feminino , Substância Cinzenta/diagnóstico por imagem , Humanos , Interpretação de Imagem Assistida por Computador , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico por imagem , Neuroimagem/métodos , Estudos Retrospectivos
6.
Brain ; 141(6): 1665-1677, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29741648

RESUMO

See Stankoff and Louapre (doi:10.1093/brain/awy114) for a scientific commentary on this article.Grey matter atrophy is present from the earliest stages of multiple sclerosis, but its temporal ordering is poorly understood. We aimed to determine the sequence in which grey matter regions become atrophic in multiple sclerosis and its association with disability accumulation. In this longitudinal study, we included 1417 subjects: 253 with clinically isolated syndrome, 708 with relapsing-remitting multiple sclerosis, 128 with secondary-progressive multiple sclerosis, 125 with primary-progressive multiple sclerosis, and 203 healthy control subjects from seven European centres. Subjects underwent repeated MRI (total number of scans 3604); the mean follow-up for patients was 2.41 years (standard deviation = 1.97). Disability was scored using the Expanded Disability Status Scale. We calculated the volume of brain grey matter regions and brainstem using an unbiased within-subject template and used an established data-driven event-based model to determine the sequence of occurrence of atrophy and its uncertainty. We assigned each subject to a specific event-based model stage, based on the number of their atrophic regions. Linear mixed-effects models were used to explore associations between the rate of increase in event-based model stages, and T2 lesion load, disease-modifying treatments, comorbidity, disease duration and disability accumulation. The first regions to become atrophic in patients with clinically isolated syndrome and relapse-onset multiple sclerosis were the posterior cingulate cortex and precuneus, followed by the middle cingulate cortex, brainstem and thalamus. A similar sequence of atrophy was detected in primary-progressive multiple sclerosis with the involvement of the thalamus, cuneus, precuneus, and pallidum, followed by the brainstem and posterior cingulate cortex. The cerebellum, caudate and putamen showed early atrophy in relapse-onset multiple sclerosis and late atrophy in primary-progressive multiple sclerosis. Patients with secondary-progressive multiple sclerosis showed the highest event-based model stage (the highest number of atrophic regions, P < 0.001) at the study entry. All multiple sclerosis phenotypes, but clinically isolated syndrome, showed a faster rate of increase in the event-based model stage than healthy controls. T2 lesion load and disease duration in all patients were associated with increased event-based model stage, but no effects of disease-modifying treatments and comorbidity on event-based model stage were observed. The annualized rate of event-based model stage was associated with the disability accumulation in relapsing-remitting multiple sclerosis, independent of disease duration (P < 0.0001). The data-driven staging of atrophy progression in a large multiple sclerosis sample demonstrates that grey matter atrophy spreads to involve more regions over time. The sequence in which regions become atrophic is reasonably consistent across multiple sclerosis phenotypes. The spread of atrophy was associated with disease duration and with disability accumulation over time in relapsing-remitting multiple sclerosis.


Assuntos
Encéfalo/patologia , Progressão da Doença , Substância Cinzenta/patologia , Esclerose Múltipla/patologia , Adulto , Atrofia/etiologia , Atrofia/patologia , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/complicações , Esclerose Múltipla Crônica Progressiva/patologia , Esclerose Múltipla Recidivante-Remitente/patologia , Estudos Retrospectivos
7.
Radiology ; 273(2): 529-38, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25158046

RESUMO

PURPOSE: To determine if high-intensity, task-oriented, visual feedback training with a video game balance board (Nintendo Wii) induces significant changes in diffusion-tensor imaging ( DTI diffusion-tensor imaging ) parameters of cerebellar connections and other supratentorial associative bundles and if these changes are related to clinical improvement in patients with multiple sclerosis. MATERIALS AND METHODS: The protocol was approved by local ethical committee; each participant provided written informed consent. In this 24-week, randomized, two-period crossover pilot study, 27 patients underwent static posturography and brain magnetic resonance (MR) imaging at study entry, after the first 12-week period, and at study termination. Thirteen patients started a 12-week training program followed by a 12-week period without any intervention, while 14 patients received the intervention in reverse order. Fifteen healthy subjects also underwent MR imaging once and underwent static posturography. Virtual dissection of white matter tracts was performed with streamline tractography; values of DTI diffusion-tensor imaging parameters were then obtained for each dissected tract. Repeated measures analyses of variance were performed to evaluate whether DTI diffusion-tensor imaging parameters significantly changed after intervention, with false discovery rate correction for multiple hypothesis testing. RESULTS: There were relevant differences between patients and healthy control subjects in postural sway and DTI diffusion-tensor imaging parameters (P < .05). Significant main effects of time by group interaction for fractional anisotropy and radial diffusivity of the left and right superior cerebellar peduncles were found (F2,23 range, 5.555-3.450; P = .036-.088 after false discovery rate correction). These changes correlated with objective measures of balance improvement detected at static posturography (r = -0.381 to 0.401, P < .05). However, both clinical and DTI diffusion-tensor imaging changes did not persist beyond 12 weeks after training. CONCLUSION: Despite the low statistical power (35%) due to the small sample size, the results showed that training with the balance board system modified the microstructure of superior cerebellar peduncles. The clinical improvement observed after training might be mediated by enhanced myelination-related processes, suggesting that high-intensity, task-oriented exercises could induce favorable microstructural changes in the brains of patients with multiple sclerosis.


Assuntos
Imagem de Tensor de Difusão/métodos , Esclerose Múltipla/patologia , Fibras Nervosas Mielinizadas/patologia , Jogos de Vídeo , Substância Branca/patologia , Adolescente , Adulto , Meios de Contraste , Estudos Cross-Over , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Equilíbrio Postural , Estudos Prospectivos
8.
Mult Scler ; 20(5): 566-76, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23999607

RESUMO

OBJECTIVE: The objective of this paper is to investigate four-year outcomes of interferon beta (IFNB)-treated patients with multiple sclerosis (MS) according to their clinical or magnetic resonance imaging (MRI) activity status at first year of treatment. METHODS: A total of 370 patients with MS duration ≤5 years before IFNB start were followed-up for four years. The optimal threshold for one-year MRI activity that more accurately predicted subsequent relapses or disability worsening was identified. The risk of relapses and disability worsening after the first year was then estimated by propensity score (PS)-adjusted analyses in patients fulfilling European Medicines Agency (EMA) criteria for second-line escalation and in those with isolated MRI activity. RESULTS: A total of 192 (51.9%) patients relapsed, and 66 (17.8%) worsened in disability from year 1 to 4 of follow-up. The more accurate threshold for one-year MRI activity was the occurrence of ≥1 enhancing or ≥2 new T2-lesions. An increased risk of relapses and disability worsening was found in either patients fulfilling EMA criteria (hazard ratio (HR) = 3.69, and HR = 6.02) and in those experiencing isolated MRI activity (HR = 3.15, and HR = 5.31) at first year of treatment, when compared with stable patients (all p values <0.001). CONCLUSION: The four-year outcomes of patients with isolated MRI activity did not differ from those fulfilling EMA criteria at first year of IFNB treatment.


Assuntos
Avaliação da Deficiência , Fatores Imunológicos/uso terapêutico , Interferon beta/uso terapêutico , Imageamento por Ressonância Magnética , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/tratamento farmacológico , Adulto , Progressão da Doença , Feminino , Humanos , Estimativa de Kaplan-Meier , Modelos Logísticos , Masculino , Esclerose Múltipla/patologia , Valor Preditivo dos Testes , Pontuação de Propensão , Estudos Prospectivos , Recidiva , Medição de Risco , Fatores de Risco , Índice de Gravidade de Doença , Fatores de Tempo , Falha de Tratamento , Adulto Jovem
9.
BMC Neurol ; 14: 149, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25123109

RESUMO

BACKGROUND: Pisa Syndrome or Pleurothotonus is a relatively rare truncal dystonia, characterized by tonic flexion of the trunk and head to one side with slight rotation of the body. Since frequently associated to specific drugs such as antipsychotics and cholinesterase inhibitors or to Parkinson Disease, a pathophysiological role of cholinergic-dopaminergic imbalance has been suggested. We report here the first case of Pisa Syndrome due to an extracerebral pathology as subdural haematoma. CASE PRESENTATION: A hypertensive patient was admitted to Our Department for subacute onset of tonic flexion and slight rotation of the trunk associated to progressive motor deficit in left upper limb after a mild head trauma without loss of consciousness occurred around three month before. No previous or current pharmacological interventions with antidepressant, neuroleptic or anticholinergic drugs were anamnestically retrieved. Familiar and personal history was negative for neurological disorders other than acute cerebrovascular diseases. Acutely performed cerebral MRI with DWI showed a voluminous right subdural haematoma with mild shift of median line. After surgical evacuation, both motor deficit and truncal dystonia were dramatically resolved. At one-year follow up, the patient did not develop any extrapyramidal and cognitive signs or symptoms. CONCLUSIONS: According to many Authors, the occurrence of truncal dystonia during several pharmacologic treatments and neurodegenerative disorders (such as Alzheimer disease and parkinsonian syndromes) supported the hypothesis that a complex dysregulation of multiple neurotransmitter systems are involved. We suggest a possible role of basal ganglia compression in pathogenesis of truncal dystonia by means of thalamo-cortical trait functional disruption and loss of proprioceptive integration. A further contribution of the subcortical structure displacement that alters motor cortex connectivity to basal ganglia may be postulated.


Assuntos
Distonia/etiologia , Hematoma Subdural/complicações , Idoso , Encéfalo/patologia , Hematoma Subdural/patologia , Humanos , Hipertensão/complicações , Masculino , Síndrome
11.
Brain Commun ; 6(3): fcae132, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38707707

RESUMO

Neurofilament light chain is an established marker of neuroaxonal injury that is elevated in CSF and blood across various neurological diseases. It is increasingly used in clinical practice to aid diagnosis and monitor progression and as an outcome measure to assess safety and efficacy of disease-modifying therapies across the clinical translational neuroscience field. Quantitative methods for neurofilament light chain in human biofluids have relied on immunoassays, which have limited capacity to describe the structure of the protein in CSF and how this might vary in different neurodegenerative diseases. In this study, we characterized and quantified neurofilament light chain species in CSF across neurodegenerative and neuroinflammatory diseases and healthy controls using targeted mass spectrometry. We show that the quantitative immunoprecipitation-tandem mass spectrometry method developed in this study strongly correlates to single-molecule array measurements in CSF across the broad spectrum of neurodegenerative diseases and was replicable across mass spectrometry methods and centres. In summary, we have created an accurate and cost-effective assay for measuring a key biomarker in translational neuroscience research and clinical practice, which can be easily multiplexed and translated into clinical laboratories for the screening and monitoring of neurodegenerative disease or acute brain injury.

12.
Neuroimage Rep ; 4(3): 100216, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39328985

RESUMO

Background: Deep grey matter pathology is a key driver of disability worsening in people with multiple sclerosis. Quantitative susceptibility mapping (QSM) is an advanced magnetic resonance imaging (MRI) technique which quantifies local magnetic susceptibility from variations in phase produced by changes in the local magnetic field. In the deep grey matter, susceptibility has previously been validated against tissue iron concentration. However, it currently remains unknown whether susceptibility is abnormal in older progressive MS cohorts, and whether it correlates with disability. Objectives: To investigate differences in mean regional susceptibility in deep grey matter between people with secondary progressive multiple sclerosis (SPMS) and healthy controls; to examine in patients the relationships between deep grey matter susceptibility and clinical and imaging measures of disease severity. Methods: Baseline data from a subgroup of the MS-STAT2 trial (simvastatin vs. placebo in SPMS, NCT03387670) were included. The subgroup underwent clinical assessments and an advanced MRI protocol at 3T. A cohort of age-matched healthy controls underwent the same MRI protocol. Susceptibility maps were reconstructed using a robust QSM pipeline from multi-echo 3D gradient-echo sequence. Regions of interest (ROIs) in the thalamus, globus pallidus and putamen were segmented from 3D T1-weighted images, and lesions segmented from 3D fluid-attenuated inversion recovery images. Linear regression was used to compare susceptibility from ROIs between patients and controls, adjusting for age and sex. Where significant differences were found, we further examined the associations between ROI susceptibility and clinical and imaging measures of MS severity. Results: 149 SPMS (77% female; mean age: 53 yrs; median Expanded Disability Status Scale (EDSS): 6.0 [interquartile range 4.5-6.0]) and 33 controls (52% female, mean age: 57) were included.Thalamic susceptibility was significantly lower in SPMS compared to controls: mean (SD) 28.6 (12.8) parts per billion (ppb) in SPMS vs. 39.2 (12.7) ppb in controls; regression coefficient: -12.0 [95% confidence interval: -17.0 to -7.1], p < 0.001. In contrast, globus pallidus and putamen susceptibility were similar between both groups.In SPMS, a 10 ppb lower thalamic susceptibility was associated with a +0.13 [+0.01 to +0.24] point higher EDSS (p < 0.05), a -2.4 [-3.8 to -1.0] point lower symbol digit modality test (SDMT, p = 0.001), and a -2.4 [-3.7 to -1.1] point lower Sloan low contrast acuity, 2.5% (p < 0.01).Lower thalamic susceptibility was also strongly associated with a higher T2 lesion volume (T2LV, p < 0.001) and lower normalised whole brain, deep grey matter and thalamic volumes (all p < 0.001). Conclusions: The reduced thalamic susceptibility found in SPMS compared to controls suggests that thalamic iron concentrations are lower at this advanced stage of the disease. The observed relationships between lower thalamic susceptibility and more severe physical, cognitive and visual disability suggests that reductions in thalamic iron may correlate with important mechanisms of clinical disease progression. Such mechanisms appear to intimately link reductions in thalamic iron with higher T2LV and the development of thalamic atrophy, encouraging further research into QSM-derived thalamic susceptibility as a biomarker of disease severity in SPMS.

13.
BMJ Open ; 14(9): e086414, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39284697

RESUMO

INTRODUCTION: There remains a high unmet need for disease-modifying therapies that can impact disability progression in secondary progressive multiple sclerosis (SPMS). Following positive results of the phase 2 MS-STAT study, the MS-STAT2 phase 3 trial will evaluate the efficacy and cost-effectiveness of repurposed high-dose simvastatin in slowing the progression of disability in SPMS. METHODS AND ANALYSIS: MS-STAT2 will be a multicentre, randomised, placebo-controlled, double-blind trial of participants aged between 25 and 65 (inclusive) who have SPMS with an Expanded Disability Status Scale (EDSS) score of 4.0-6.5 (inclusive). Steady progression rather than relapse must be the major cause of increasing disability in the preceding 2 years.Participants will be allocated to simvastatin or placebo in a 1:1 ratio. The active treatment will be 80 mg daily, after 1 month at 40 mg daily. 31 hospitals across the UK will participate.The primary outcome is (confirmed) disability progression at 6 monthly intervals, measured as change from EDSS baseline score. Recruitment of 1050 participants will be required to achieve a total of 330 progression events, giving 90% power to demonstrate a 30% relative reduction in disability progression versus placebo. The follow-up period is 36 months, extendable by up to 18 months for patients without confirmed progression.Clinician-reported measures include Timed 25 Foot Walk; 9 Hole Peg Test; Single Digit Modalities Test; Sloan Low Contrast Visual Acuity; Relapse assessment; modified Rankin Scale and Brief International Cognitive Assessment For Multiple Sclerosis. Patient-reported outcomes include MS-specific walking, fatigue and impact scales. A health economic analysis will occur. ETHICS AND DISSEMINATION: The protocol was approved by the London-Westminster REC (17/LO/1509). This manuscript is based on protocol version 8.0, 26 February 2024. Trial findings will be disseminated through peer-reviewed publications and conference presentations. TRIAL REGISTRATION NUMBERS: NCT03387670; ISRCTN82598726.


Assuntos
Progressão da Doença , Esclerose Múltipla Crônica Progressiva , Sinvastatina , Humanos , Sinvastatina/uso terapêutico , Método Duplo-Cego , Esclerose Múltipla Crônica Progressiva/tratamento farmacológico , Esclerose Múltipla Crônica Progressiva/fisiopatologia , Reino Unido , Pessoa de Meia-Idade , Adulto , Estudos Multicêntricos como Assunto , Ensaios Clínicos Fase III como Assunto , Análise Custo-Benefício , Masculino , Feminino , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Avaliação da Deficiência , Idoso , Resultado do Tratamento
14.
BMJ Neurol Open ; 6(2): e000670, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39262426

RESUMO

Background: The brain reserve hypothesis posits that larger maximal lifetime brain growth (MLBG) may confer protection against physical disability in multiple sclerosis (MS). Larger MLBG as a proxy for brain reserve, has been associated with reduced progression of physical disability in patients with early MS; however, it is unknown whether this association remains once in the secondary progressive phase of MS (SPMS). Our aim was to assess whether larger MLBG is associated with decreased physical disability progression in SPMS. Methods: We conducted a post hoc analysis of participants in the MS-Secondary Progressive Multi-Arm Randomisation Trial (NCT01910259), a multicentre randomised placebo-controlled trial of the neuroprotective potential of three agents in SPMS. Physical disability was measured by Expanded Disability Status Scale (EDSS), 9-hole peg test (9HPT) and 25-foot timed walk test (T25FW) at baseline, 48 and 96 weeks. MLBG was estimated by baseline intracranial volume (ICV). Multivariable time-varying Cox regression models were used to investigate the association between MLBG and physical disability progression. Results: 383 participants (mean age 54.5 years, 298 female) were followed up over 96 weeks. Median baseline EDSS was 6.0 (range 4.0-6.5). Adjusted for covariates, larger MLBG was associated with a reduced risk of EDSS progression (HR 0.84,95% CI:0.72 to 0.99;p=0.04). MLBG was not independently associated with time to progression as measured by 9HPT or T25FW. Conclusion: Larger MLBG is independently associated with physical disability progression over 96 weeks as measured by EDSS in SPMS. This suggests that MLBG as a proxy for brain reserve may continue to confer protection against disability when in the secondary progression phase of MS. Trail registration number: NCT01910259.

15.
Neurology ; 100(3): e308-e323, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36192175

RESUMO

BACKGROUND AND OBJECTIVES: Relapsing-remitting multiple sclerosis (RRMS), aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder (AQP4-NMOSD), and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) may have overlapping clinical features. There is an unmet need for imaging markers that differentiate between them when serologic testing is unavailable or ambiguous. We assessed whether imaging characteristics typical of MS discriminate RRMS from AQP4-NMOSD and MOGAD, alone and in combination. METHODS: Adult, nonacute patients with RRMS, APQ4-NMOSD, and MOGAD and healthy controls were prospectively recruited at the National Hospital for Neurology and Neurosurgery (London, United Kingdom) and the Walton Centre (Liverpool, United Kingdom) between 2014 and 2019. They underwent conventional and advanced brain, cord, and optic nerve MRI and optical coherence tomography (OCT). RESULTS: A total of 91 consecutive patients (31 RRMS, 30 APQ4-NMOSD, and 30 MOGAD) and 34 healthy controls were recruited. The most accurate measures differentiating RRMS from AQP4-NMOSD were the proportion of lesions with the central vein sign (CVS) (84% vs 33%, accuracy/specificity/sensitivity: 91/88/93%, p < 0.001), followed by cortical lesions (median: 2 [range: 1-14] vs 1 [0-1], accuracy/specificity/sensitivity: 84/90/77%, p = 0.002) and white matter lesions (mean: 39.07 [±25.8] vs 9.5 [±14], accuracy/specificity/sensitivity: 78/84/73%, p = 0.001). The combination of higher proportion of CVS, cortical lesions, and optic nerve magnetization transfer ratio reached the highest accuracy in distinguishing RRMS from AQP4-NMOSD (accuracy/specificity/sensitivity: 95/92/97%, p < 0.001). The most accurate measures favoring RRMS over MOGAD were white matter lesions (39.07 [±25.8] vs 1 [±2.3], accuracy/specificity/sensitivity: 94/94/93%, p = 0.006), followed by cortical lesions (2 [1-14] vs 1 [0-1], accuracy/specificity/sensitivity: 84/97/71%, p = 0.004), and retinal nerve fiber layer thickness (RNFL) (mean: 87.54 [±13.83] vs 75.54 [±20.33], accuracy/specificity/sensitivity: 80/79/81%, p = 0.009). Higher cortical lesion number combined with higher RNFL thickness best differentiated RRMS from MOGAD (accuracy/specificity/sensitivity: 84/92/77%, p < 0.001). DISCUSSION: Cortical lesions, CVS, and optic nerve markers achieve a high accuracy in distinguishing RRMS from APQ4-NMOSD and MOGAD. This information may be useful in clinical practice, especially outside the acute phase and when serologic testing is ambiguous or not promptly available. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that selected conventional and advanced brain, cord, and optic nerve MRI and OCT markers distinguish adult patients with RRMS from AQP4-NMOSD and MOGAD.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Neuromielite Óptica , Humanos , Esclerose Múltipla/diagnóstico por imagem , Aquaporina 4 , Glicoproteína Mielina-Oligodendrócito , Retina/patologia , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Autoanticorpos
16.
Mult Scler Relat Disord ; 63: 103925, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35671671

RESUMO

BACKGROUND: Evidence-based treatment of pain in people with MS presents a major unmet need. OBJECTIVE: We aimed to establish if use of Fluoxetine, Riluzole or Amiloride improved neuropathic pain outcomes in comparison to placebo, in adults with secondary progressive MS participating in a trial of these putative neuroprotectants. METHODS: In pre-specified secondary analyses of the MS SMART phase-2b double-blind randomised controlled trial (NCT01910259), we analyzed reports of neuropathic pain, overall pain, and pain interference. Multivariate analyses included adjustment for baseline pain severity. Additionally, we explored associations of pain severity with clinical and MRI brain imaging variables. RESULTS: 445 Participants were recruited from 13 UK neuroscience centres. We found no statistically significant benefit of active intervention on any rating of neuropathic pain, or pain overall. Compared to placebo, adjusted mean difference in pain intensity was 0.38 (positive values favouring placebo, 95%CI -0.30 to 1.07, p = 0.27) for Amiloride; 0.52 (-0.17 to 1.22, p = 0.14) for Fluoxetine; and 0.40 (-0.30 to 1.10, p = 0.26) for Riluzole. Pain severity was positively correlated with depressive symptoms (Spearman correlation 0.19, 95%CI 0.10-0.28) and fatigue (Rho 0.30, 95%CI 0.20-0.39). CONCLUSION: Use of Fluoxetine, Riluzole or Amiloride was not associated with improvement in neuropathic pain symptoms, in comparison to placebo.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Neuralgia , Adulto , Amilorida/uso terapêutico , Método Duplo-Cego , Fluoxetina/uso terapêutico , Humanos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla Crônica Progressiva/tratamento farmacológico , Neuralgia/tratamento farmacológico , Neuralgia/etiologia , Riluzol/uso terapêutico
17.
Trials ; 23(1): 644, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945550

RESUMO

BACKGROUND: Slower than planned recruitment is a major factor contributing to the delay or failure of randomised controlled trials to report on time. There is a limited evidence base regarding the optimisation of recruitment strategies. Here we performed an observational review of our experience in recruitment for two large randomised controlled trials for people with secondary progressive multiple sclerosis. We aimed to explicitly determine those factors which can facilitate trial recruitment in progressive neurodegenerative disease. METHODS: Recruitment data from the sequential MS-SMART [NCT01910259] and MS-STAT2 [NCT03387670] UK randomised controlled trials was reviewed from the largest recruiting site, University College London (UCL). The trial population was similar which allowed comparison over the two recruitment periods of 2015-2016 and 2018-2021. This included sources of referral, progress through stages of recruitment, reasons for participant ineligibility and the impact of publicity events upon recruitment. RESULTS: In MS-SMART, 18% of patients contacted were enrolled, compared to 27% for MS-STAT2. Online registration of interest portals provided the greatest number of referrals (76% in MS-SMART, and 51% in MS-STAT2), with publicity in national media outlets producing a demonstrable increase in the number of potential participants. The introduction of an online self-screening questionnaire for MS-STAT2 resulted in 67% of potential participants (3080 of 4605) automatically determining their own ineligibility. In both studies, however, around 60% of those directly telephoned to discuss the study were not eligible, with difficulties related to travel to trial visits, or excluded medication, being the most common issues. Eighty-four percent of those deemed potentially eligible following telephone calls were enrolled in the MS-STAT2 study, compared to only 55% for MS-SMART. CONCLUSIONS: Through a detailed review of recruiting participants at the largest centre into two large randomised controlled trials with similar entry criteria, we have identified a number of approaches that may improve recruitment efficiency. We highlight here the importance of mandatory online self-screening questionnaires, a coordinated publicity campaign, and simple interventions such as eligibility checklists and appointment reminders. Recruitment approaches should be further assessed through a studies within a trial (SWAT) design. TRIAL REGISTRATION: MS-SMART: NCT01910259 ; registered July 2013 and MS-STAT2: NCT03387670 ; registered Jan 2018.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Doenças Neurodegenerativas , Humanos , Londres , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla Crônica Progressiva/diagnóstico , Esclerose Múltipla Crônica Progressiva/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Fator de Transcrição STAT2 , Telefone
18.
Neuroimage Clin ; 33: 102904, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34875458

RESUMO

Predicting disability in progressive multiple sclerosis (MS) is extremely challenging. Although there is some evidence that the spatial distribution of white matter (WM) lesions may play a role in disability accumulation, the lack of well-established quantitative metrics that characterise these aspects of MS pathology makes it difficult to assess their relevance for clinical progression. This study introduces a novel approach, called SPACE-MS, to quantitatively characterise spatial distributional features of brain MS lesions, so that these can be assessed as predictors of disability accumulation. In SPACE-MS, the covariance matrix of the spatial positions of each patient's lesional voxels is computed and its eigenvalues extracted. These are combined to derive rotationally-invariant metrics known to be common and robust descriptors of ellipsoid shape such as anisotropy, planarity and sphericity. Additionally, SPACE-MS metrics include a neuraxis caudality index, which we defined for the whole-brain lesion mask as well as for the most caudal brain lesion. These indicate how distant from the supplementary motor cortex (along the neuraxis) the whole-brain mask or the most caudal brain lesions are. We applied SPACE-MS to data from 515 patients involved in three studies: the MS-SMART (NCT01910259) and MS-STAT1 (NCT00647348) secondary progressive MS trials, and an observational study of primary and secondary progressive MS. Patients were assessed on motor and cognitive disability scales and underwent structural brain MRI (1.5/3.0 T), at baseline and after 2 years. The MRI protocol included 3DT1-weighted (1x1x1mm3) and 2DT2-weighted (1x1x3mm3) anatomical imaging. WM lesions were semiautomatically segmented on the T2-weighted scans, deriving whole-brain lesion masks. After co-registering the masks to the T1 images, SPACE-MS metrics were calculated and analysed through a series of multiple linear regression models, which were built to assess the ability of spatial distributional metrics to explain concurrent and future disability after adjusting for confounders. Patients whose WM lesions laid more caudally along the neuraxis or were more isotropically distributed in the brain (i.e. with whole-brain lesion masks displaying a high sphericity index) at baseline had greater motor and/or cognitive disability at baseline and over time, independently of brain lesion load and atrophy measures. In conclusion, here we introduced the SPACE-MS approach, which we showed is able to capture clinically relevant spatial distributional features of MS lesions independently of the sheer amount of lesions and brain tissue loss. Location of lesions in lower parts of the brain, where neurite density is particularly high, such as in the cerebellum and brainstem, and greater spatial spreading of lesions (i.e. more isotropic whole-brain lesion masks), possibly reflecting a higher number of WM tracts involved, are associated with clinical deterioration in progressive MS. The usefulness of the SPACE-MS approach, here demonstrated in MS, may be explored in other conditions also characterised by the presence of brain WM lesions.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Substância Branca , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Esclerose Múltipla Crônica Progressiva/diagnóstico por imagem , Esclerose Múltipla Crônica Progressiva/patologia , Substância Branca/patologia
19.
Neurology ; 98(17): e1783-e1793, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35277438

RESUMO

BACKGROUND AND OBJECTIVE: To explore the relationship between slowly expanding lesions (SELs) on MRI and disability in secondary progressive multiple sclerosis (SPMS). METHODS: We retrospectively studied 345 patients with SPMS enrolled in the MS-SMART trial. They underwent brain MRI at baseline and at 24 and 96 weeks. Definite SELs were defined as concentrically expanding T2 lesions, as assessed by nonlinear deformation of volumetric T1-weighted images. Associations of SEL volumes with other MRI metrics and disability were assessed through Pearson correlations and regression analyses. RESULTS: Averaged across patients, 29% of T2 lesions were classified as being definite SELs. A greater volume of definite SELs correlated with a higher total baseline T2 lesion volume (r = 0.55, p < 0.001) and percentage brain volume reduction (r = -0.26, p < 0.001), a higher number of new persisting T1 black holes (r = 0.19, p < 0.001), and, in a subset of 106 patients, with a greater reduction in magnetization transfer ratio (adjusted difference 0.52, p < 0.001). In regression analyses, a higher definite SEL volume was associated with increasing disability, as assessed by the Expanded Disability Status Scale (ß = 0.23, p = 0.020), z scores of the Multiple Sclerosis Functional Composite (ß = -0.47, p = 0.048), Timed 25-Foot Walk Test (ß = -2.10, p = 0.001), and Paced Auditory Serial Addition Task (ß = -0.27, p = 0.006), and increased risk of disability progression (odds ratio 1.92, p = 0.025). DISCUSSION: Definite SELs represent almost one-third of T2 lesions in SPMS. They are associated with neurodegenerative MRI markers and related to clinical worsening, suggesting that they may contribute to disease progression and be a new target for therapeutic interventions.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Encéfalo/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla Crônica Progressiva/complicações , Esclerose Múltipla Crônica Progressiva/diagnóstico por imagem , Esclerose Múltipla Crônica Progressiva/tratamento farmacológico , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA