RESUMO
Native American genetic ancestry has been remarkably implicated with increased risk of diverse health issues in several Mexican populations, especially in relation to the dramatic changes in environmental, dietary, and cultural settings they have recently undergone. In particular, the effects of these ecological transitions and Westernization of lifestyles have been investigated so far predominantly on Mestizo individuals. Nevertheless, indigenous groups, rather than admixed Mexicans, have plausibly retained the highest proportions of genetic components shaped by natural selection in response to the ancient milieu experienced by Mexican ancestors during their pre-Columbian evolutionary history. These formerly adaptive variants have the potential to represent the genetic determinants of some biological traits that are peculiar to Mexican people, as well as a reservoir of loci with possible biomedical relevance. To test such a hypothesis, we used genome-wide genotype data to infer the unique adaptive evolution of Native Mexican groups selected as reasonable descendants of the main pre-Columbian Mexican civilizations. A combination of haplotype-based and gene-network analyses enabled us to detect genomic signatures ascribable to polygenic adaptive traits plausibly evolved by the main genetic clusters of Mexican indigenous populations to cope with local environmental and/or cultural conditions. Some of these adaptations were found to play a role in modulating the susceptibility/resistance of these groups to certain pathological conditions, thus providing new evidence that diverse selective pressures have contributed to shape the current biological and disease-risk patterns of present-day Native and Mestizo Mexican populations.
Assuntos
Adaptação Fisiológica , Seleção Genética , Genótipo , Haplótipos , Humanos , Herança MultifatorialRESUMO
A large body of evidence indicates that environmental agents can induce alterations in DNA methylation (DNAm) profiles. Radiofrequency electromagnetic fields (RF-EMFs) are radiations emitted by everyday devices, which have been classified as "possibly carcinogenic"; however, their biological effects are unclear. As aberrant DNAm of genomic repetitive elements (REs) may promote genomic instability, here, we sought to determine whether exposure to RF-EMFs could affect DNAm of different classes of REs, such as long interspersed nuclear elements-1 (LINE-1), Alu short interspersed nuclear elements and ribosomal repeats. To this purpose, we analysed DNAm profiles of cervical cancer and neuroblastoma cell lines (HeLa, BE(2)C and SH-SY5Y) exposed to 900 MHz GSM-modulated RF-EMF through an Illumina-based targeted deep bisulfite sequencing approach. Our findings showed that radiofrequency exposure did not affect the DNAm of Alu elements in any of the cell lines analysed. Conversely, it influenced DNAm of LINE-1 and ribosomal repeats in terms of both average profiles and organisation of methylated and unmethylated CpG sites, in different ways in each of the three cell lines studied.
Assuntos
Metilação de DNA , Neuroblastoma , Humanos , DNA Ribossômico , Neuroblastoma/genética , Linhagem Celular , Elementos Alu/genéticaRESUMO
Eritrea is a multi-ethnic country of over 3 million of people consisting of different ethnic groups, having each its own language and cultural tradition. Due to the lack of population genetic data for markers of forensic interest, in this study, we analyzed the genetic polymorphisms of 23 Y-chromosome STR loci and of 12 X-chromosome STR loci in a sample of 255 unrelated individuals from 8 Eritrean ethnic groups, with the aim to generate a reference haplotype database for anthropological and forensic applications. X- and Y-chromosomes markers may indeed offer information especially in personal identification and kinship testing, when relying on the availability of large local population data to derive sufficiently accurate frequency estimates. The population genetic analyses in the Eritrean sample for both the two set of Y- and X-STR markers showed high power of discrimination both at country-based and population levels. Comparison population results highlight the importance of considering the ethnic composition within the analyzed country and the necessity of increasing available data especially when referring to heterogeneous populations such as the African ones.
Assuntos
Cromossomos Humanos X/genética , Cromossomos Humanos Y/genética , Etnicidade/genética , Genética Populacional , Haplótipos , Repetições de Microssatélites , Bases de Dados Genéticas , Eritreia/etnologia , Humanos , Masculino , Polimorfismo GenéticoRESUMO
With the recent advances in next-generation sequencing (NGS), mitochondrial whole-genome sequencing has begun to be applied to the field of the forensic biology as an alternative to the traditional Sanger-type sequencing (STS). However, experimental workflows, commercial solutions, and output data analysis must be strictly validated before being implemented into the forensic laboratory. In this study, we performed an internal validation for an NGS-based typing of the entire mitochondrial genome using the Precision ID mtDNA Whole Genome Panel (Thermo Fisher Scientific) on the Ion S5 sequencer (Thermo Fisher Scientific). Concordance, repeatability, reproducibility, sensitivity, and heteroplasmy detection analyses were assessed using the 2800 M and 9947A standard control DNA as well as typical casework specimens, and results were compared with conventional Sanger sequencing and another NGS sequencer in a different laboratory. We discuss the strengths and limitations of this approach, highlighting some issues regarding noise thresholds and heteroplasmy detection, and suggesting solutions to mitigate these effects and improve overall data interpretation. Results confirmed that the Precision ID Whole mtDNA Genome Panel is highly reproducible and sensitive, yielding useful full mitochondrial DNA sequences also from challenging DNA specimens, thus providing further support for its use in forensic practice.
Assuntos
Genoma Mitocondrial , DNA Mitocondrial/genética , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Reprodutibilidade dos Testes , Análise de Sequência de DNA/métodosRESUMO
OBJECTIVES: Genetic drift and admixture are driving forces in human evolution, but their concerted impact to population evolution in historical times and at a micro-geographic scale is poorly assessed. In this study we test a demographic model encompassing both admixture and drift to the case of social-cultural isolates such as the so-called "Commons." MATERIALS AND METHODS: Commons are peculiar institutions of medieval origins whose key feature is the tight relationship between population and territory, mediated by the collective property of shared resources. Here, we analyze the Y-chromosomal genetic structure of four Commons (for a total of 366 samples) from the Central and Eastern Padana plain in Northern Italy. RESULTS: Our results reveal that all these groups exhibit patterns of significant diversity reduction, peripheral/outlier position within the Italian/European genetic space and high frequency of Common-specific haplogroups. By explicitly testing different drift-admixture models, we show that a drift-only model is more probable for Central Padana Commons, while additional admixture (~20%) from external population around the same time of their foundation cannot be excluded for the Eastern ones. DISCUSSION: Building on these results, we suggest central Middle Ages as the most probable age of foundation for three of the considered Commons, the remaining one pointing to late antiquity. We conclude that an admixture-drift model is particularly useful for interpreting the genetic structure and recent demographic history of small-scale populations in which social-cultural features play a significant role.
Assuntos
Cromossomos Humanos Y , Deriva Genética , Cromossomos Humanos Y/genética , Variação Genética/genética , Genética Populacional , Haplótipos , Humanos , ItáliaRESUMO
BACKGROUND: The cline of human genetic diversity observable across Europe is recapitulated at a micro-geographic scale by variation within the Italian population. Besides resulting from extensive gene flow, this might be ascribable also to local adaptations to diverse ecological contexts evolved by people who anciently spread along the Italian Peninsula. Dissecting the evolutionary history of the ancestors of present-day Italians may thus improve the understanding of demographic and biological processes that contributed to shape the gene pool of European populations. However, previous SNP array-based studies failed to investigate the full spectrum of Italian variation, generally neglecting low-frequency genetic variants and examining a limited set of small effect size alleles, which may represent important determinants of population structure and complex adaptive traits. To overcome these issues, we analyzed 38 high-coverage whole-genome sequences representative of population clusters at the opposite ends of the cline of Italian variation, along with a large panel of modern and ancient Euro-Mediterranean genomes. RESULTS: We provided evidence for the early divergence of Italian groups dating back to the Late Glacial and for Neolithic and distinct Bronze Age migrations having further differentiated their gene pools. We inferred adaptive evolution at insulin-related loci in people from Italian regions with a temperate climate, while possible adaptations to pathogens and ultraviolet radiation were observed in Mediterranean Italians. Some of these adaptive events may also have secondarily modulated population disease or longevity predisposition. CONCLUSIONS: We disentangled the contribution of multiple migratory and adaptive events in shaping the heterogeneous Italian genomic background, which exemplify population dynamics and gene-environment interactions that played significant roles also in the formation of the Continental and Southern European genomic landscapes.
Assuntos
Evolução Molecular , Variação Genética , Genoma Humano , Arqueologia , DNA Antigo/análise , Humanos , Itália , População BrancaRESUMO
BACKGROUND: Phoenician and Punic expansions have been protagonists of intense trade networks and settlements in the Mediterranean Sea. AIMS: The maternal genetic variability of ancient Punic samples from the Sardinian necropolis of Tharros was analysed, with the aim to explore genetic interactions and signatures of past population events. SUBJECTS AND METHODS: The mtDNA HVS-I and coding region SNPs were analysed in 14 Punic samples and 74 modern individuals from Cabras and Belvì (for which the HVS-II region was also analysed). The results were compared with 5,590 modern Euro-Mediterranean sequences and 127 ancient samples. RESULTS: While contemporary groups fall within the genetic variability of other modern Sardinians, our Punic samples reveal proximity to present-day North-African and Iberian populations. Furthermore, Cabras and Belvì cluster mainly with pre-Phoenician groups, while samples from Tharros project with other Punic Sardinian individuals. CONCLUSION: This study provides the first preliminary insights into the population dynamics of the Punic site of Tharros. While the number of currently available samples does not allow definitive investigation of the connection with indigenous Sardinian groups, our results seem to confirm internal migratory phenomena in the central-western Mediterranean and female participation in the Punic mobility.
Assuntos
DNA Antigo/análise , DNA Mitocondrial/análise , Variação Genética , Migração Humana , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Itália , Masculino , Dinâmica Populacional , TunísiaRESUMO
The NBN gene has been included in breast cancer (BC) multigene panels based on early studies suggesting an increased BC risk for carriers, though not confirmed by recent research. To evaluate the impact of NBN analysis, we assessed the results of NBN sequencing in 116 BRCA-negative BC patients and reviewed the literature. Three patients (2.6%) carried potentially relevant variants: two, apparently unrelated, carried the frameshift variant c.156_157delTT and another one the c.628G>T variant. The latter was subsequently found in 4/1390 (0.3%) BC cases and 8/1580 (0.5%) controls in an independent sample, which, together with in silico predictions, provided evidence against its pathogenicity. Conversely, the rare c.156_157delTT variant was absent in the case-control set; moreover, a 50% reduction of NBN expression was demonstrated in one carrier. However, in one family it failed to co-segregate with BC, while the other carrier was found to harbor also a probably pathogenic TP53 variant that may explain her phenotype. Therefore, the c.156_157delTT, although functionally deleterious, was not supported as a cancer-predisposing defect. Pathogenic/likely pathogenic NBN variants were detected by multigene panels in 31/12314 (0.25%) patients included in 15 studies. The risk of misinterpretation of such findings is substantial and supports the exclusion of NBN from multigene panels.
Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Proteínas de Ciclo Celular/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Proteínas Nucleares/genética , Adulto , Alelos , Estudos de Casos e Controles , Análise Mutacional de DNA , Feminino , Regulação Neoplásica da Expressão Gênica , Estudos de Associação Genética/métodos , Testes Genéticos , Genótipo , Haplótipos , Humanos , LinhagemRESUMO
Extensive European and African admixture coupled with loss of Amerindian lineages makes the reconstruction of pre-Columbian history of Native Americans based on present-day genomes extremely challenging. Still open questions remain about the dispersals that occurred throughout the continent after the initial peopling from the Beringia, especially concerning the number and dynamics of diffusions into South America. Indeed, if environmental and historical factors contributed to shape distinct gene pools in the Andes and Amazonia, the origins of this East-West genetic structure and the extension of further interactions between populations residing along this divide are still not well understood. To this end, we generated new high-resolution genome-wide data for 229 individuals representative of one Central and ten South Amerindian ethnic groups from Mexico, Peru, Bolivia, and Argentina. Low levels of European and African admixture in the sampled individuals allowed the application of fine-scale haplotype-based methods and demographic modeling approaches. These analyses revealed highly specific Native American genetic ancestries and great intragroup homogeneity, along with limited traces of gene flow mainly from the Andes into Peruvian Amazonians. Substantial amount of genetic drift differentially experienced by the considered populations underlined distinct patterns of recent inbreeding or prolonged isolation. Overall, our results support the hypothesis that all non-Andean South Americans are compatible with descending from a common lineage, while we found low support for common Mesoamerican ancestors of both Andeans and other South American groups. These findings suggest extensive back-migrations into Central America from non-Andean sources or conceal distinct peopling events into the Southern Continent.
Assuntos
Genoma Humano , Migração Humana , Indígenas Sul-Americanos/genética , Fluxo Gênico , Variação Genética , Haplótipos , Humanos , Modelos Genéticos , Filogeografia , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal , América do SulRESUMO
OBJECTIVES: The Yaghnobis are an ethno-linguistic minority historically settled along the Yaghnob River in the Upper-Zarafshan Valley in Tajikistan. They speak a language of Old Sogdian origin, which is the only present-day witness of the Lingua Franca used along the Silk Road in Late Antiquity. The aim of this study was to reconstruct the genetic history of this community in order to shed light on its isolation and genetic ancestry within the Euro-Asiatic context. MATERIALS AND METHODS: A total of 100 DNA samples were collected in the Yaghnob and Matcha Valleys during several expeditions and their mitochondrial, Y-chromosome and autosomal genome-wide variation were compared with that from a large set of modern and ancient Euro-Asiatic samples. RESULTS: Findings from uniparental markers highlighted the long-term isolation of the Yaghnobis. Mitochondrial DNA ancestry traced an ancient link with Middle Eastern populations, whereas Y-chromosome legacy showed more tight relationships with Central Asians. Admixture, outgroup-f3, and D-statistics computed on autosomal variation corroborated Y-chromosome evidence, pointing respectively to low Anatolian Neolithic and high Steppe ancestry proportions in Yaghnobis, and to their closer affinity with Tajiks than to Iranians. DISCUSSION: Although the Yaghnobis do not show evident signs of recent admixture, they could be considered a modern proxy for the source of gene flow for many Central Asian and Middle Eastern groups. Accordingly, they seem to retain a peculiar genomic ancestry probably ascribable to an ancient gene pool originally wide spread across a vast area and subsequently reshuffled by distinct demographic events occurred in Middle East and Central Asia.
Assuntos
Povo Asiático/genética , Etnicidade/genética , População Branca/genética , Antropologia Física , Cromossomos Humanos Y/genética , DNA Mitocondrial/genética , Migração Humana , Humanos , Masculino , Metagenômica , Polimorfismo de Nucleotídeo Único/genética , TadjiquistãoRESUMO
BACKGROUND: Environmental conditions and past migratory events may have shaped genetic heterogeneity of clinically relevant enzymes involved in the phase I metabolism of the most common therapeutic drugs. AIM: To investigate the genetic variability of CYP2D6, CYP2B6, CYP2C19 and CYP2C9 across the Italian Peninsula, by sampling only ancestrally and geographically homogeneous individuals from northern, central and southern Italy. SUBJECTS AND METHODS: A total of 25 SNPs were genotyped in 174 unrelated Italian individuals by means of multiplex PCR and minisequencing reactions. CYP2D6 genotypic data were used to predict phenotypes and the phylogenetic relationships among reconstructed haplotypes were represented by means of a Median Joining Network. RESULTS: Pairwise Fisher Exact tests revealed significant differences between northern and southern Italy in the distribution of CYP2C19 genotypes, with the CYP2C19*2 allele appearing over-represented in northern Italy. Likewise, significant differences in the distribution of CYP2D6 genotypes (*4/*3, *4/*4 and *6/*4) responsible for the poor metabolizer phenotype were observed in northern with respect to both central and southern Italy. CONCLUSIONS: The north-south structuring pattern showed by CYP2D6 and CYP2C19 underline how a deeper knowledge of the geographic distribution of alleles may improve clinical practice and help to avoid hypothetical bias in drug trials.
Assuntos
Família 2 do Citocromo P450/genética , Frequência do Gene , Polimorfismo Genético , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP2D6/genética , Humanos , ItáliaRESUMO
BACKGROUND: Archaeological data provide evidence that Italy, during the Iron Age, witnessed the appearance of the first communities with well defined cultural identities. To date, only a few studies report genetic data about these populations and, in particular, the Piceni have never been analysed. AIMS: To provide new data about mitochondrial DNA (mtDNA) variability of an Iron Age Italic population, to understand the contribution of the Piceni in shaping the modern Italian gene pool and to ascertain the kinship between some individuals buried in the same grave within the Novilara necropolis. SUBJECTS AND METHODS: In a first set of 10 individuals from Novilara, we performed deep sequencing of the HVS-I region of the mtDNA, combined with the genotyping of 22 SNPs in the coding region and the analysis of several autosomal markers. RESULTS: The results show a low nucleotide diversity for the inhabitants of Novilara and highlight a genetic affinity of this ancient population with the current inhabitants of central Italy. No family relationship was observed between the individuals analysed here. CONCLUSIONS: This study provides a preliminary characterisation of the mtDNA variability of the Piceni of Novilara, as well as a kinship assessment of two peculiar burials.
Assuntos
DNA Mitocondrial/análise , Variação Genética , Haplótipos , Polimorfismo de Nucleotídeo Único , Arqueologia , DNA Antigo/análise , Feminino , Humanos , Itália , MasculinoRESUMO
STUDY QUESTION: Does selection for mtDNA mutations occur in human oocytes? SUMMARY ANSWER: We provide statistical evidence in favor of the existence of purifying selection for mtDNA mutations in human oocytes acting between the expulsion of the first and second polar bodies (PBs). WHAT IS KNOWN ALREADY: Several lines of evidence in Metazoa, including humans, indicate that variation within the germline of mitochondrial genomes is under purifying selection. The presence of this internal selection filter in the germline has important consequences for the evolutionary trajectory of mtDNA. However, the nature and localization of this internal filter are still unclear while several hypotheses are proposed in the literature. STUDY DESIGN, SIZE, DURATION: In this study, 60 mitochondrial genomes were sequenced from 17 sets of oocytes, first and second PBs, and peripheral blood taken from nine women between 38 and 43 years of age. PARTICIPANTS/MATERIALS, SETTING, METHODS: Whole genome amplification was performed only on the single cell samples and Sanger sequencing was performed on amplicons. The comparison of variant profiles between first and second PB sequences showed no difference in substitution rates but displayed instead a sharp difference in pathogenicity scores of protein-coding sequences using three different metrics (MutPred, Polyphen and SNPs&GO). MAIN RESULTS AND THE ROLE OF CHANCE: Unlike the first, second PBs showed no significant differences in pathogenic scores with blood and oocyte sequences. This suggests that a filtering mechanism for disadvantageous variants operates during oocyte development between the expulsion of the first and second PB. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: The sample size is small and further studies are needed before this approach can be used in clinical practice. Studies on a model organism would allow the sample size to be increased. WIDER IMPLICATIONS OF THE FINDINGS: This work opens the way to the study of the correlation between mtDNA mutations, mitochondrial capacity and viability of oocytes. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by a SISMER grant. Laboratory facilities and skills were freely provided by SISMER, and by the Alma Mater Studiorum, University of Bologna. The authors have no conflict of interest to disclose.
Assuntos
DNA Mitocondrial/genética , Mitocôndrias/genética , Mutação , Oócitos/metabolismo , Oogênese/genética , Adulto , Feminino , Genoma Mitocondrial , Humanos , Oócitos/citologiaRESUMO
Different factors are known to influence the early gut colonization in newborns, among them the perinatal use of antibiotics. On the other hand, the effect on the baby of the administration of antibiotics to the mother during labor, referred to as intrapartum antibiotic prophylaxis (IAP), has received less attention, although routinely used in group B Streptococcus positive women to prevent the infection in newborns. In this work, the fecal microbiota of neonates born to mothers receiving IAP and of control subjects were compared taking advantage for the first time of high-throughput DNA sequencing technology. Seven different 16S rDNA hypervariable regions (V2, V3, V4, V6 + V7, V8, and V9) were amplified and sequenced using the Ion Torrent Personal Genome Machine. The results obtained showed significant differences in the microbial composition of newborns born to mothers who had received IAP, with a lower abundance of Actinobacteria and Bacteroidetes as well as an overrepresentation of Proteobacteria. Considering that the seven hypervariable regions showed different discriminant ability in the taxonomic identification, further analyses were performed on the V4 region evidencing in IAP infants a reduced microbial richness and biodiversity, as well as a lower number of bacterial families with a predominance of Enterobacteriaceae members. In addition, this analysis pointed out a significant reduction in Bifidobacterium spp. strains. The reduced abundance of these beneficial microorganisms, together with the increased amount of potentially pathogenic bacteria, may suggest that IAP infants are more exposed to gastrointestinal or generally health disorders later in age.
Assuntos
Antibioticoprofilaxia , Microbioma Gastrointestinal/efeitos dos fármacos , Actinobacteria/genética , Actinobacteria/fisiologia , Adulto , Antibioticoprofilaxia/efeitos adversos , Bactérias/genética , Bifidobacterium/genética , Bifidobacterium/fisiologia , Biodiversidade , DNA Ribossômico , Enterobacteriaceae/genética , Enterobacteriaceae/fisiologia , Fezes/microbiologia , Feminino , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Lactente , Recém-Nascido , Trabalho de Parto , Gravidez , RNA Ribossômico 16S , Infecções Estreptocócicas/tratamento farmacológico , Infecções Estreptocócicas/prevenção & controle , Streptococcus agalactiae/genética , Streptococcus agalactiae/fisiologiaRESUMO
OBJECTIVE: Frequency patterns of the lactase persistence (LP)-associated -13,915 G allele and archaeological records pointing to substantial role played by southern regions in the peopling and domestication processes that involved the Arabian Peninsula suggest that Southern Arabia plausibly represented the center of diffusion of such adaptive variant. Nevertheless, a well-defined scenario for evolution of Arabian LP is still to be elucidated and the burgeoning archaeological picture of complex human migrations occurred through the peninsula is not matched by an equivalent high-resolution description of genetic variation underlying this adaptive trait. To fill this gap, we investigated diversity at a wide genomic interval surrounding the LCT gene in different Southern Arabian populations. METHODS: 40 SNPs were genotyped to characterize LCT profiles of 630 Omani and Yemeni individuals to perform population structure, linkage disequilibrium, population differentiation-based and haplotype-based analyses. RESULTS: Typical Arabian LP-related variation was found in Dhofaris and Yemenis, being characterized by private haplotypes carrying the -13,915 G allele, unusual differentiation with respect to northern groups and conserved homozygous haplotype-blocks, suggesting that the adaptive allele was likely introduced in the Arabian gene pool in southern populations and was then subjected to prolonged selective pressure. CONCLUSION: By pointing to Yemen as one of the best candidate centers of diffusion of the Arabian-specific adaptive variant, obtained results indicate the spread of indigenous groups as the main process underlying dispersal of LP along the Arabian Peninsula, supporting a refugia model for Arabian demic movements occurred during the Terminal Pleistocene and Early Holocene.
Assuntos
Lactase/genética , Polimorfismo de Nucleotídeo Único/genética , Seleção Genética/genética , Antropologia Física , Genética Populacional , Haplótipos , Migração Humana , Humanos , Desequilíbrio de Ligação , Grupos Raciais/genética , IêmenRESUMO
To investigate the mitochondrial DNA (mtDNA) segregation in human oocytes, the level of heteroplasmy in the three products of meioses, polar bodies (PBs) and corresponding oocytes, was assessed by studying the hypervariable region I (HVRI) of the D-loop region. The DNA from 122 PBs and 51 oocytes from 16 patients was amplified by whole genome amplification (WGA). An aliquot of the WGA product was used to assess aneuploidy, and another aliquot to study mtDNA. The HVRI was amplified and sequenced with an efficiency of 75.4 and 63%, respectively, in PBs, and of 100% in oocytes. The comparison with the mtDNA sequences from blood of the individual donors showed full correspondence of polymorphisms with the matching oocytes, whilst in PBs the degree of concordance dropped to 89.6%. Haplogroups were inferred for all 16 patients. Of the 89 diagnosed PBs from the 13 patients belonging to macrohaplogroup R, 23 were euploid and 66 aneuploid. The incidence of total anomalies was significantly lower in haplogroup H (6.5%) when compared with haplogroups J and T (17.6 and 13.4% respectively; P < 0.001). In haplogroup J, hypoaneuploidy occurred more frequently than hyperaneuploidy. In the three patients belonging to haplogroup N*, 81% of PBs were aneuploid with similar rates of chromosome hypoaneuploidy and hyperaneuploidy. The presence of mtDNA base changes confined to PBs could reflect a selection mechanism against severe mtDNA mutations, while permitting a high evolution rate that could result in bioenergetic diversity. The different susceptibility to aneuploidy by some haplogroups strongly supports this hypothesis.
Assuntos
DNA Mitocondrial/análise , Oócitos/metabolismo , Corpos Polares/metabolismo , Adulto , Cromossomos , Feminino , Humanos , Infertilidade Feminina/genética , Infertilidade Feminina/metabolismoRESUMO
OBJECTIVES: Behçet's disease is a multifactorial vasculitis that shows its highest prevalence in geographical areas historically involved in the Silk Road, suggesting that it might have originated somewhere along these ancient trade routes. This study aims to provide a first clue towards genetic evidence for this hypothesis by testing it via an anthropological evolutionary genetics approach. METHODS: Behçet's disease variation at ancestry informative mitochondrial DNA control region and haplogroup diagnostic sites was characterised in 185 disease subjects of Italian descent and set into the Eurasian mitochondrial landscape by comparison with nearly 9,000 sequences representative of diversity observable in Italy and along the main Silk Road routes. RESULTS: Dissection of the actual genetic ancestry of disease individuals by means of population structure, spatial autocorrelation and haplogroup analyses revealed their closer relationships with some Middle Eastern and Central Asian groups settled along the Silk Road than with healthy Italians. CONCLUSIONS: These findings support the hypothesis that the Behçet's disease genetic risk has migrated to western Eurasia in parallel with ancestry components typical of Silk Road-related groups. This provided new insights that are useful to improve the understanding of disease origins and diffusion, as well as to inform future association studies aimed at properly accounting for the actual genetic ancestry of the examined Behçet's disease samples in order to minimise the detection of spurious associations and to improve the identification of genetic variants with actual clinical relevance.
Assuntos
Povo Asiático/genética , Síndrome de Behçet/genética , Comércio , DNA Mitocondrial/genética , Evolução Molecular , Marcadores Genéticos , Seda , População Branca/genética , Ásia/etnologia , Síndrome de Behçet/diagnóstico , Síndrome de Behçet/epidemiologia , Análise por Conglomerados , Predisposição Genética para Doença , Genética Populacional , Haplótipos , Humanos , Itália/epidemiologia , Linhagem , Fenótipo , Fatores de Risco , Análise de Sequência de DNA , Seda/economia , Topografia MédicaRESUMO
OBJECTIVE: Although genetic variants related to lactase persistence in European populations were supposed to have firstly undergone positive selection in farmers from the Balkans and Central Europe, demographic and evolutionary dynamics that subsequently shaped the distribution of this adaptive trait across the continent have still to be elucidated. To deepen the knowledge about potential routes of diffusion of lactase persistence to Western Europe we investigated variation at a large genomic region surrounding the LCT gene along the Italian peninsula, a geographical area that played a key role in population movements responsible for Neolithic diffusion across Europe. METHODS: By genotyping 40 highly selected SNPs in more than 400 Italian individuals we described gradients of nucleotide and haplotype variation potentially related to lactase persistence and compared them with those observed in several European and Mediterranean human groups. RESULTS: Multiple migratory events responsible for earlier introduction of the examined alleles in Italy than in Northern European regions could be invoked. Different demic processes occurred along the western and eastern sides of the peninsula were also inferred via linkage disequilibrium and population structure analyses. CONCLUSION: The appreciable genetic continuum observed between people from Northern or Central-Western Italy and Central European populations suggested a local arrival of lactase persistence-related variants mainly via overland routes. On the contrary, diversity of Central-Eastern and Southern Italian groups entailed also gene flow from South-Eastern Mediterranean regions, in accordance to the earlier entrance of the Neolithic in Southern Italy via maritime population movements along the Mediterranean coastlines.
Assuntos
Lactase/genética , Polimorfismo de Nucleotídeo Único/genética , População Branca/genética , Frequência do Gene , Haplótipos , Migração Humana , Humanos , Itália/epidemiologia , Intolerância à Lactose/genética , Desequilíbrio de Ligação , Seleção Genética , População Branca/estatística & dados numéricosRESUMO
The Yanesha are a Peruvian population who inhabit an environment transitional between the Andes and Amazonia. They present cultural traits characteristic of both regions, including in the language they speak: Yanesha belongs to the Arawak language family (which very likely originated in the Amazon/Orinoco lowlands), but has been strongly influenced by Quechua, the most widespread language family of the Andes. Given their location and cultural make-up, the Yanesha make for an ideal case study for investigating language and population dynamics across the Andes-Amazonia divide. In this study, we analyze data from high and mid-altitude Yanesha villages, both Y chromosome (17 STRs and 16 SNPs diagnostic for assigning haplogroups) and mtDNA data (control region sequences and 3 SNPs and one INDEL diagnostic for assigning haplogroups). We uncover sex-biased genetic trends that probably arose in different stages: first, a male-biased gene flow from Andean regions, genetically consistent with highland Quechua-speakers and probably dating back to Inca expansion; and second, traces of European contact consistent with Y chromosome lineages from Italy and Tyrol, in line with historically documented migrations. Most research in the history, archaeology and linguistics of South America has long been characterized by perceptions of a sharp divide between the Andes and Amazonia; our results serve as a clear case-study confirming demographic flows across that 'divide'.
Assuntos
Cromossomos Humanos Y/genética , DNA Mitocondrial/genética , Etnicidade/genética , Indígenas Sul-Americanos/genética , Etnicidade/etnologia , Genótipo , Haplótipos , Humanos , Indígenas Sul-Americanos/etnologia , Idioma , Masculino , Repetições de Microssatélites/genética , Polimorfismo de Nucleotídeo Único/genética , América do SulRESUMO
Clonal hematopoiesis of indeterminate potential (CHIP), marked by the accumulation of somatic mutations in hematopoietic stem cells, significantly elevates the risk of all-cause mortality, mainly due to cardiovascular events. Therefore, investigating this pathophysiological phenomenon is crucial for understanding cardiovascular aging and enhancing both health span and lifespan. In the present study, we examined samples of subjects enrolled within the angiographically controlled Verona Heart Study (VHS), which provides a robust model for cardiovascular aging, particularly regarding coronary artery disease (CAD). We analyzed 44 older subjects diagnosed with coronary artery disease (CAD) and 42 healthy, sex- and age-matched controls (CAD-FREE). Employing deep sequencing and an amplicon-based approach, we focused on 11 key genetic regions in ASXL1, DNMT3A, IDH1, IDH2, JAK2, PPM1D, SF3B1, SRSF2, TET2, TP53, and U2AF1 genes to investigate clonal hematopoiesis. Subjects in the CAD group exhibited a significantly higher variant burden than those in the CAD-FREE group, both in terms of the total number of somatic variants and disruptive variants affecting protein function. This increased mutational load was notably influenced by six specific genetic regions: ASXL1, DNMT3A, IDH2, JAK2, TET2, and U2AF1, which displayed elevated variant rates in the CAD subjects. Moreover, ASXL1, DNMT3A, IDH2, JAK2, SF3B1, TET2, and TP53 exhibited substantially higher levels of disruptive variants in the CAD group. In summary, our findings highlight a correlation between clonal hematopoiesis and the accumulation of disruptive variants in specific genomic regions in the VHS cohort, thereby shedding light on their potential role in cardiovascular aging.