Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
País/Região como assunto
Ano de publicação
Intervalo de ano de publicação
1.
Med Vet Entomol ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783513

RESUMO

Culicoides imicola is the main vector of viral diseases of livestock in Europe such as bluetongue (BT), African horse sickness and epizootic haemorrhagic disease. Climatic factors are the main drivers of C. imicola occurrence and its distribution might be subject to rapid shifts due to climate change. Entomological data, collected during BT surveillance, and climatic/environmental variables were used to analyse ecological niche and to model C. imicola distribution and possible future range shifts in Italy. An ensemble technique was used to weigh the performance of machine learning, linear and profile methods. Updated future climate projections from the latest phase of the Climate Model Intercomparison Project were used to generate future distributions for the next three 20-year periods, according to combinations of general circulation models and shared socioeconomic pathways and considering different climate change scenarios. Results indicated the minimum temperature of the coldest month (BIO 6) and precipitation of the driest-warmest months (BIO 14) as the main limiting climatic factors. Indeed, BIO 6 and BIO 14 reported the two highest values of variable importance, respectively, 9.16% (confidence interval [CI] = 7.99%-10.32%), and 2.01% (CI = 1.57%-2.44%). Under the worst-case scenario of climate change, C. imicola range is expected to expand northward and shift away from the coasts of central Italy, while in some areas of southern Italy, environmental suitability will decrease. Our results provide predictions of C. imicola distribution according to the most up-to-date future climate projections and should be of great use to surveillance management at regional and national scales.

2.
Sci Data ; 11(1): 636, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879616

RESUMO

Modelling approaches play a crucial role in supporting local public health agencies by estimating and forecasting vector abundance and seasonality. However, the reliability of these models is contingent on the availability of standardized, high-quality data. Addressing this need, our study focuses on collecting and harmonizing egg count observations of the mosquito Aedes albopictus, obtained through ovitraps in monitoring and surveillance efforts across Albania, France, Italy, and Switzerland from 2010 to 2022. We processed the raw observations to obtain a continuous time series of ovitraps observations allowing for an extensive geographical and temporal coverage of Ae. albopictus population dynamics. The resulting post-processed observations are stored in the open-access database VectAbundance.This initiative addresses the critical need for accessible, high-quality data, enhancing the reliability of modelling efforts and bolstering public health preparedness.


Assuntos
Aedes , Animais , Bases de Dados Factuais , Mosquitos Vetores , Dinâmica Populacional , França , Albânia , Suíça , Itália
3.
Front Vet Sci ; 10: 1270202, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38264469

RESUMO

Non-human primates (NHPs) living in captive conditions are susceptible to intestinal parasites that can contribute to mortality and morbidity, and cause zoonotic infections. Thus, parasite surveys on NHP populations under human care are relevant as part of the evaluation of NHPs welfare and in the zoonotic disease risk assessment, as well as in the exploration of parasite transmission pathways, according to the One-Health concept. This study aimed to identify intestinal parasites infecting NHPs living in two wildlife recovery centers and in a zoological garden, in Italy. Ninety-three fecal samples from Macaca tonkeana, Macaca fascicularis, Sapajus apella, Chlorocebus aethiops, Macaca fuscata, Macaca sylvanus, and Cebus capucinus were collected at Piano dell'Abatino Park (Lazio), and fecal smears and flotation were performed in order to identify parasites according to morphological keys. Additionally, one carcass of M. fuscata from the Bioparco Zoological Garden of Rome (Lazio) and one of M. fascicularis from the Center for the Recovery of Exotic and Maremma Wild Animals (Tuscany) were necropsied and intestinal adult nematodes were collected and characterized at morphological and molecular level, using the mitochondrial cox1 and rrnL markers. Protozoans (Entamoeba coli, Iodamoeba bütschlii, Dientamoeba fragilis-like, Giardia sp.), chromists (Balantidium/Buxtonella sp.) and nematodes (Capillaria sp., Trichuris sp., strongyliform larvae and Oesophagostomum sp.) were found through fecal smears and flotation. The collected adult nematodes from dead NHPs were morphologically identified as whipworms (genus Trichuris). Phylogenetic analyses grouped Trichuris specimens into the Trichuris trichiura complex of species, with specimens from M. fuscata clustering into a host-specific branch, and whipworms from M. fascicularis clustering within a clade formed by Trichuris infecting several primate species, including humans. The results here collected revealed the presence of potentially zoonotic parasites circulating in captive primates in Italy, providing useful information for the formulation of management and care plans for captive NHPs, and for the elaboration of safety measures for visitors and animal keepers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA