Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microorganisms ; 9(10)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34683474

RESUMO

This study evaluated the microbial colonization (adhesion and biofilm) on modified surfaces of a titanium alloy, Ti-35Nb-7Zr-5Ta, anodized with Ca and P or F ions, with and without silver deposition. The chemical composition, surface topography, roughness (Ra), and surface free energy were evaluated before and after the surface modifications (anodizing). Adhesion and biofilm formation on saliva-coated discs by primary colonizing species (Streptococcus sanguinis, Streptococcus gordonii, Actinomyces naeslundii) and a periodontal pathogen (Porphyromonasgingivalis) were assessed. The surfaces of titanium alloys were modified after anodizing with volcano-shaped micropores with Ca and P or nanosized with F, both with further silver deposition. There was an increase in the Ra values after micropores formation; CaP surfaces became more hydrophilic than other surfaces, showing the highest polar component. For adhesion, no difference was detected for S. gordonii on all surfaces, and some differences were observed for the other three species. No differences were found for biofilm formation per species on all surfaces. However, S. gordonii biofilm counts on distinct surfaces were lower than S. sanguinis, A. naeslundii, and P. gingivalis on some surfaces. Therefore, anodized Ti-35Nb-7Zr-5Ta affected microbial adhesion and subsequent biofilm, but silver deposition did not hinder the colonization of these microorganisms.

2.
Front Pediatr ; 8: 429, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850543

RESUMO

Given the high prevalence of obesity in children and adolescents, the investigation of early markers is of clinical importance to better manage this condition. Thus, the aim was to evaluate the cross-sectional relationship between salivary microbiota, gingival health status, and excess weight in adolescents. A total of 248 students (14-17 y; 119 girls) were included, free of caries lesions and periodontal pockets. Physical examination included measures of height, weight, and body fat percentage (%BF). Oral examination was performed to gather information on dental (DMFT index) and gingival health status. Unstimulated saliva was submitted to qPCR reactions to quantify Streptococcus mutans, Porphyromonas gingivalis, Bifidobacteria, and Streptococcus pneumoniae percentages and the NFKappaB expression. Two-way ANOVA was applied considering group (normal-weight/overweight/obesity) and sex factors, in addition to cluster analysis. Group effect was significant for %S. mutans (partial eta2 = 0.20; p < 0.001) and %Bifidobacteria (partial eta2 = 0.19; p < 0.001), with overweight and obesity groups showing the highest levels compared to normal-weight ones, with no significant sex effect. There was no difference in the frequency of gingivitis, P. gingivalis, and S. pneumoniae percentages or NFKappaB expression between groups. Cluster analysis generated three clusters according to body fat accumulation: "Higher %BF," "Moderate %BF," and "Lower %BF." "Higher %BF" cluster was characterized by higher body fat percentage and higher salivary %Bifidobacteria, while cluster "Lower %BF" was characterized by lower body fat percentage and lower frequency of gingivitis ("Moderate %BF" cluster was the contrast). According to nutritional status, a difference in salivary S. mutans and Bifidobacteria percentages was found, with overweight or obesity adolescents showing the highest percentages than normal-weight ones. Besides, a positive relationship between body fat accumulation and Bifidobacteria count was observed, indicating a possible interaction between oral bacteria communities and weight gain.

3.
J Oral Microbiol ; 11(1): 1607505, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31143407

RESUMO

Background: Streptococcus mutans orchestrates the development of a biofilm that causes dental caries in the presence of dietary sucrose, and, in the bloodstream, S. mutans can cause systemic infections. The development of a cariogenic biofilm is dependent on the formation of an extracellular matrix rich in exopolysaccharides, which contains extracellular DNA (eDNA) and lipoteichoic acids (LTAs). While the exopolysaccharides are virulence markers, the involvement of genes linked to eDNA and LTAs metabolism in the pathogenicity of S. mutans remains unclear. Objective and Design: In this study, a parental strain S. mutans UA159 and derivative strains carrying single gene deletions were used to investigate the role of eDNA (ΔlytS and ΔlytT), LTA (ΔdltA and ΔdltD), and insoluble exopolysaccharides (ΔgtfB) in virulence in a rodent model of dental caries (rats) and a systemic infection model (Galleria mellonella larvae). Results: Fewer carious lesions were observed on smooth and sulcal surfaces of enamel and dentin of the rats infected with ∆lytS, ∆dltD, and ΔgtfB (vs. the parental strain). Moreover, strains carrying gene deletions prevented the killing of larvae (vs. the parental strain). Conclusions: Altogether, these findings indicate that inactivation of lytST and dltAD impaired S. mutans cariogenicity and virulence in vivo.

4.
J Oral Microbiol ; 11(1): 1581520, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681463

RESUMO

Background: Streptococcus mutans (Sm) and Candida albicans (Ca) are found in biofilms of early childhood caries. Objective: To characterize in vitro dual- and single-species biofilms of Sm and Ca formed on saliva-coated hydroxyapatite discs in the presence of sucrose. Design: Evaluation of biofilms included biochemical [biomass, proteins, matrix's water-soluble (WSP) and alkali-soluble (ASP) polysaccharides, microbiological, 3D structure, gene expression, and stress tolerance analyses. Results: Biomass and proteins were higher for dual-species and lower for Ca (p = 0.001). Comparison of Sm single- and dual-species biofilms revealed no significant difference in Sm numbers or quantity of WSP (p > 0.05). Dual-species biofilms contained a higher population of Ca (p < 0.001). The quantity of ASP was higher in dual-species biofilms (vs Ca single-species biofilms; p = 0.002). The 3D structure showed larger microcolonies and distinct distribution of Sm-derived exopolysaccharides in dual-species biofilms. Compared with dual-species biofilms, expression of gtfB (ASP) and nox1 (oxidative stress) was higher for single-species of Sm whilst expression of BGL2 (matrix), PHR1 (matrix, acid tolerance) and SOD1 (oxidative stress) was higher in single-species of Ca. There was no difference for acid tolerance genes (Sm atpD and Ca PHR2), which was confirmed by acid tolerance challenge. Dual-species biofilms were more tolerant to oxidative and antimicrobial stresses (p < 0.05). Conclusions: Dual-species biofilms present greater 3D complexity, thereby, making them more resistant to stress conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA