RESUMO
PURPOSE: Brain metastases are associated with high morbidity and are often resistant to immune checkpoint inhibitors. We evaluated whether CDK4/6 inhibitor (CDKi) abemaciclib can sensitize intracranial tumors to programmed cell death protein 1 (PD-1) inhibition in mouse models of melanoma and breast cancer brain metastasis. EXPERIMENTAL DESIGN: Treatment response was evaluated in vivo using immunocompetent mouse models of brain metastasis bearing concurrent intracranial and extracranial tumors. Treatment effect on intracranial and extracranial tumor-immune microenvironments (TIME) was evaluated using immunofluorescence, multiplex immunoassays, high-parameter flow cytometry, and T-cell receptor profiling. Mice with humanized immune systems were evaluated using flow cytometry to study the effect of CDKi on human T-cell development. RESULTS: We found that combining abemaciclib with PD-1 inhibition reduced tumor burden and improved overall survival in mice. The TIME, which differed on the basis of anatomic location of tumors, was altered with CDKi and PD-1 inhibition in an organ-specific manner. Combination abemaciclib and anti-PD-1 treatment increased recruitment and expansion of CD8+ effector T-cell subsets, depleted CD4+ regulatory T (Treg) cells, and reduced levels of immunosuppressive cytokines in intracranial tumors. In immunodeficient mice engrafted with human immune systems, abemaciclib treatment supported development and maintenance of CD8+ T cells and depleted Treg cells. CONCLUSIONS: Our results highlight the distinct properties of intracranial and extracranial tumors and support clinical investigation of combination CDK4/6 and PD-1 inhibition in patients with brain metastases. See related commentary by Margolin, p. 257.
Assuntos
Neoplasias Encefálicas , Receptor de Morte Celular Programada 1 , Humanos , Camundongos , Animais , Neoplasias Encefálicas/patologia , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Linfócitos T CD8-Positivos , Microambiente Tumoral , Quinase 4 Dependente de Ciclina/metabolismoRESUMO
BACKGROUND: Immune checkpoint inhibitors (ICI) have revolutionized cancer treatment; however, only a subset of patients with brain metastasis (BM) respond to ICI. Activating mutations in the mitogen-activated protein kinase signaling pathway are frequent in BM. The objective of this study was to evaluate whether therapeutic inhibition of extracellular signal-regulated kinase (ERK) can improve the efficacy of ICI for BM. METHODS: We used immunotypical mouse models of BM bearing dual extracranial/intracranial tumors to evaluate the efficacy of single-agent and dual-agent treatment with selective ERK inhibitor LY3214996 (LY321) and anti-programmed death receptor 1 (PD-1) antibody. We verified target inhibition and drug delivery, then investigated treatment effects on T-cell response and tumor-immune microenvironment using high-parameter flow cytometry, multiplex immunoassays, and T-cell receptor profiling. RESULTS: We found that dual treatment with LY321 and anti-PD-1 significantly improved overall survival in 2 BRAFV600E-mutant murine melanoma models but not in KRAS-mutant murine lung adenocarcinoma. We demonstrate that although LY321 has limited blood-brain barrier (BBB) permeability, combined LY321 and anti-PD-1 therapy increases tumor-infiltrating CD8+ effector T cells, broadens the T-cell receptor repertoire in the extracranial tumor, enriches T-cell clones shared by the periphery and brain, and reduces immunosuppressive cytokines and cell populations in tumors. CONCLUSIONS: Despite the limited BBB permeability of LY321, combined LY321 and anti-PD-1 treatment can improve intracranial disease control by amplifying extracranial immune responses, highlighting the role of extracranial tumors in driving intracranial response to treatment. Combined ERK and PD-1 inhibition is a promising therapeutic approach, worthy of further investigation for patients with melanoma BM.
Assuntos
Neoplasias Encefálicas , Inibidores de Checkpoint Imunológico , Melanoma , Receptor de Morte Celular Programada 1 , Proteínas Proto-Oncogênicas B-raf , Animais , Camundongos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/patologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/patologia , Melanoma/imunologia , Melanoma/genética , Humanos , Imunoterapia/métodos , Feminino , Modelos Animais de Doenças , Microambiente Tumoral/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Camundongos Endogâmicos C57BL , MutaçãoRESUMO
Due to increasing incidence and limited treatments, brain metastases (BM) are an emerging unmet need in modern oncology. Development of effective therapeutics has been hindered by unique challenges. Individual steps of the brain metastatic cascade are driven by distinctive biological processes, suggesting that BM possess intrinsic biological differences compared to primary tumors. Here, we discuss the unique physiology and metabolic constraints specific to BM as well as emerging treatment strategies that leverage potential vulnerabilities.
Assuntos
Neoplasias Encefálicas , Medicina de Precisão , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Encéfalo/metabolismo , Encéfalo/patologiaRESUMO
Brain metastases (BMs) are an emerging challenge in oncology due to increasing incidence and limited treatments. Here, we present results of a single-arm, open-label, phase 2 trial evaluating intracranial efficacy of pembrolizumab, a programmed cell death protein 1 inhibitor, in 9 patients with untreated BMs (cohort A) and 48 patients with recurrent and progressive BMs (cohort B) across different histologies. The primary endpoint was the proportion of patients achieving intracranial benefit, defined by complete response, partial response or stable disease. The primary endpoint was met with an intracranial benefit rate of 42.1% (90% confidence interval (CI): 31-54%). The median overall survival, a secondary endpoint, was 8.0 months (90% CI: 5.5-8.7 months) across both cohorts, 6.5 months (90% CI: 4.5-18.7 months) for cohort A and 8.1 months (90% CI: 5.3-9.6 months) for cohort B. Seven patients (12.3%), encompassing breast, melanoma and sarcoma histologies, had overall survival greater than 2 years. Thirty patients (52%; 90% CI: 41-64%) had one or more grade-3 or higher adverse events that were at least possibly treatment related. Two patients had grade-4 adverse events (cerebral edema) that were deemed at least possibly treatment related. These results suggest that programmed cell death protein 1 blockade may benefit a select group of patients with BMs, and support further studies to identify biomarkers and mechanisms of resistance. ClinicalTrials.gov identifier: NCT02886585.
Assuntos
Neoplasias Encefálicas , Melanoma , Humanos , Anticorpos Monoclonais Humanizados/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/secundário , Melanoma/patologiaRESUMO
High-grade meningiomas are associated with neuro-cognitive morbidity and have limited treatments. High-grade meningiomas harbor an immunosuppressive tumor microenvironment (TME) and programmed death-ligand 1 (PD-L1) expression may contribute to their aggressive phenotype. Here, we present the results of a single-arm, open-label phase 2 trial (NCT03279692) evaluating the efficacy of pembrolizumab, a PD-1 inhibitor, in a cohort of 25 evaluable patients with recurrent and progressive grade 2 and 3 meningiomas. The primary endpoint is the proportion of patients alive and progression-free at 6 months (PFS-6). Secondary endpoints include progression-free and overall survival, best intracranial response, and toxicity. Our study has met its primary endpoint and achieved a PFS-6 rate of 0.48 (90% exact CI: 0.31-0.66) and a median PFS of 7.6 months (90% CI: 3.4-12.9 months). Twenty percent of patients have experienced one (or more) grade-3 or higher treatment-related adverse events. These results suggest that pembrolizumab exerts promising efficacy on a subset of these tumors. Further studies are needed to identify the biological facets within the meningioma TME that may drive response to immune-based therapies.
Assuntos
Neoplasias Meníngeas , Meningioma , Anticorpos Monoclonais Humanizados/efeitos adversos , Progressão da Doença , Humanos , Neoplasias Meníngeas/tratamento farmacológico , Meningioma/tratamento farmacológico , Microambiente TumoralRESUMO
Melanoma-derived brain metastases (MBM) represent an unmet clinical need because central nervous system progression is frequently an end stage of the disease. Immune checkpoint inhibitors (ICI) provide a clinical opportunity against MBM; however, the MBM tumor microenvironment (TME) has not been fully elucidated in the context of ICI. To dissect unique elements of the MBM TME and correlates of MBM response to ICI, we collected 32 fresh MBM and performed single-cell RNA sequencing of the MBM TME and T-cell receptor clonotyping on T cells from MBM and matched blood and extracranial lesions. We observed myeloid phenotypic heterogeneity in the MBM TME, most notably multiple distinct neutrophil states, including an IL8-expressing population that correlated with malignant cell epithelial-to-mesenchymal transition. In addition, we observed significant relationships between intracranial T-cell phenotypes and the distribution of T-cell clonotypes intracranially and peripherally. We found that the phenotype, clonotype, and overall number of MBM-infiltrating T cells were associated with response to ICI, suggesting that ICI-responsive MBMs interact with peripheral blood in a manner similar to extracranial lesions. These data identify unique features of the MBM TME that may represent potential targets to improve clinical outcomes for patients with MBM.
Assuntos
Neoplasias Encefálicas , Melanoma , Humanos , Inibidores de Checkpoint Imunológico , Microambiente TumoralRESUMO
Brain metastases from lung adenocarcinoma (BM-LUAD) frequently cause patient mortality. To identify genomic alterations that promote brain metastases, we performed whole-exome sequencing of 73 BM-LUAD cases. Using case-control analyses, we discovered candidate drivers of brain metastasis by identifying genes with more frequent copy-number aberrations in BM-LUAD compared to 503 primary LUADs. We identified three regions with significantly higher amplification frequencies in BM-LUAD, including MYC (12 versus 6%), YAP1 (7 versus 0.8%) and MMP13 (10 versus 0.6%), and significantly more frequent deletions in CDKN2A/B (27 versus 13%). We confirmed that the amplification frequencies of MYC, YAP1 and MMP13 were elevated in an independent cohort of 105 patients with BM-LUAD. Functional assessment in patient-derived xenograft mouse models validated the notion that MYC, YAP1 or MMP13 overexpression increased the incidence of brain metastasis. These results demonstrate that somatic alterations contribute to brain metastases and that genomic sequencing of a sufficient number of metastatic tumors can reveal previously unknown metastatic drivers.