Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 32(4): 6076-6084, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439318

RESUMO

The valley degree of freedom that results from broken inversion symmetry in two-dimensional (2D) transition-metal dichalcogenides (TMDCs) has sparked a lot of interest due to its huge potential in information processing. In this experimental work, to optically address the valley-polarized emission from three-layer (3 L) thick WS2 at room temperature, we employ a SiN photonic crystal slab that has two sets of holes in a square lattice that supports directional circular dichroism engendered by delocalized guided mode resonances. By perturbatively breaking the inversion symmetry of the photonic crystal slab, we can simultaneously manipulate s and p components of the radiating field so that these resonances correspond to circularly polarized emission. The emission of excitons from distinct valleys is coupled into different radiative channels and hence separated in the farfield. This directional exciton emission from selective valleys provides a potential route for valley-polarized light emitters, which lays the groundwork for future valleytronic devices.

2.
Nano Lett ; 18(2): 957-963, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29376383

RESUMO

Active tunability of photonic resonances is of great interest for various applications such as optical switching and modulation based on optoelectronic materials. Manipulation of charged excitons in atomically thin transition metal dichalcogenides (TMDCs) like monolayer MoS2 offers an unexplored route for diverse functionalities in optoelectronic nanodevices. Here, we experimentally demonstrate the dynamic photochemical and optoelectronic control of the photonic crystal Fano resonances by optical and electrical tuning of monolayer MoS2 refractive index via trions without any chemical treatment. The strong spatial and spectral overlap between the photonic Fano mode and the active MoS2 monolayer enables efficient modulation of the Fano resonance. Our approach offers new directions for potential applications in the development of optical modulators based on emerging 2D direct band gap semiconductors.

3.
ACS Photonics ; 11(3): 1078-1084, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38576862

RESUMO

The optical response in two-dimensional transition-metal dichalcogenides (2D TMDCs) is dominated by excitons. The lack of spatial inversion symmetry in the hexagonal lattice within each TMDC layer leads to valley-dependent excitonic emission of photoluminescence. Here, we demonstrate experimentally the spatial separation of valley coherent emission into orthogonal directions through self-resonant exciton polaritons of a free-standing three-layer (3L) WS2 waveguide. This was achieved by patterning a photonic crystal consisting of a square array of holes allowing for the far field probing of valley coherence of engendered exciton-polaritons. Furthermore, we report detailed experimental modal characterization of this coupled system in good agreement with theory. Momentum space measurements reveal a degree of valley coherence in the range 30-60%. This work provides a platform for manipulation of valley excitons in coherent light-matter states for potential implementations of valley-coherent optoelectronics.

4.
Nat Nanotechnol ; 19(4): 504-513, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38212523

RESUMO

Optically transparent neural microelectrodes have facilitated simultaneous electrophysiological recordings from the brain surface with the optical imaging and stimulation of neural activity. A remaining challenge is to scale down the electrode dimensions to the single-cell size and increase the density to record neural activity with high spatial resolution across large areas to capture nonlinear neural dynamics. Here we developed transparent graphene microelectrodes with ultrasmall openings and a large, transparent recording area without any gold extensions in the field of view with high-density microelectrode arrays up to 256 channels. We used platinum nanoparticles to overcome the quantum capacitance limit of graphene and to scale down the microelectrode diameter to 20 µm. An interlayer-doped double-layer graphene was introduced to prevent open-circuit failures. We conducted multimodal experiments, combining the recordings of cortical potentials of microelectrode arrays with two-photon calcium imaging of the mouse visual cortex. Our results revealed that visually evoked responses are spatially localized for high-frequency bands, particularly for the multiunit activity band. The multiunit activity power was found to be correlated with cellular calcium activity. Leveraging this, we employed dimensionality reduction techniques and neural networks to demonstrate that single-cell and average calcium activities can be decoded from surface potentials recorded by high-density transparent graphene arrays.


Assuntos
Grafite , Nanopartículas Metálicas , Camundongos , Animais , Cálcio , Eletrodos Implantados , Platina , Microeletrodos
5.
2d Mater ; 7(1)2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32523701

RESUMO

Owing to their unique electrical and optical properties, two-dimensional transition metal dichalcogenides have been extensively studied for their potential applications in biosensing. However, simultaneous utilization of both optical and electrical properties has been overlooked, yet it can offer enhanced accuracy and detection versitility. Here, we demonstrate a dual-mode optoelectronic biosensor based on monolayer molybdenum disulfide (MoS2) capable of producing simultaneous electrical and optical readouts of biomolecular signals. On a single platform, the biosensor exhibits a tunable photonic Fano-type optical resonance while also functioning as a field-effect transistor (FET) based on a optically transparent gate electrode. Furthermore, chemical vapor deposition grown MoS2 provides a clean surface for direct immobilization of a water-soluble variant of the µ-opioid receptor (wsMOR), via a nickel ion-mediated linker chemistry. We utilize a synthetic opioid peptide to show the operation of the electronic and optical sensing modes. The responses of both modes exhibit a similar trend with dynamic ranges of four orders of magnitude and detection limits of <1 nM. Our work explores the potential of a versatile multimodal sensing platform enabled by monolayer MoS2, since the integration of electrical and optical sensors on the same chip can offer flexibility in read-out and improve the accuracy in detection of low concentration targets.

6.
IEEE Trans Biomed Eng ; 67(11): 3203-3210, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32191878

RESUMO

OBJECTIVE: To investigate chronic durability of transparent graphene electrodes fabricated on polyethylene terephthalate (PET) and SU-8 substrates for chronic in vivo studies. METHODS: We perform systematic accelerated aging tests to understand the chronic reliability and failure modes of transparent graphene microelectrode arrays built on PET and SU-8 substrates. We employ graphene microelectrodes fabricated on PET substrate in chronic in vivo experiments with transgenic mice. RESULTS: Our results show that graphene microelectrodes fabricated on PET substrate work reliably after 30 days accelerated aging test performed at 87 °C, equivalent to 960 days in vivo lifetime. We demonstrate stable chronic recordings of cortical potentials in multimodal imaging/recording experiments using transparent graphene microelectrodes fabricated on PET substrate. On the other hand, graphene microelectrode arrays built on SU-8 substrate exhibit extensive crack formation across microelectrode sites and wires after one to two weeks, resulting in total failure of recording capability for chronic studies. CONCLUSION: PET shows superior reliability as a substrate for graphene microelectrode arrays for chronic in vivo experiments. SIGNIFICANCE: Graphene is a unique neural interface material enabling cross-talk free integration of electrical and optical recording and stimulation techniques in the same experiment. To date, graphene-based microelectrode arrays have been demonstrated in various multi-modal acute experiments involving electrophysiological sensing or stimulation, optical imaging and optogenetics stimulation. Understanding chronic reliability of graphene-based transparent interfaces is very important to expand the use of this technology for long-term behavioral studies with animal models.


Assuntos
Grafite , Animais , Eletrodos Implantados , Camundongos , Microeletrodos , Optogenética , Reprodutibilidade dos Testes
7.
Nat Nanotechnol ; 14(9): 844-850, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31406361

RESUMO

Optical waveguides are vital components of data communication system technologies, but their scaling down to the nanoscale has remained challenging despite advances in nano-optics and nanomaterials. Recently, we theoretically predicted that the ultimate limit of visible photon guiding can be achieved in monolayer-thick transition metal dichalcogenides. Here, we present an experimental demonstration of light guiding in an atomically thick tungsten disulfide membrane patterned as a photonic crystal structure. In this scheme, two-dimensional tungsten disulfide excitonic photoluminescence couples into quasi-guided photonic crystal modes known as resonant-type Wood's anomalies. These modes propagate via total internal reflection with only a small portion of the light diffracted to the far field. Such light guiding at the ultimate limit provides more possibilities to miniaturize optoelectronic devices and to test fundamental physical concepts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA