Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Mol Sci ; 24(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37445836

RESUMO

Interphotoreceptor retinoid-binding protein (IRBP) is an abundant glycoprotein in the subretinal space bound by the photoreceptor (PR) outer segments and the processes of the retinal pigmented epithelium (RPE). IRBP binds retinoids, including 11-cis-retinal and all-trans-retinol. In this study, visual function for demanding visual tasks was assessed in IRBP knock-out (KO) mice. Surprisingly, IRBP KO mice showed no differences in scotopic critical flicker frequency (CFF) compared to wildtype (WT). However, they did have lower photopic CFF than WT. IRBP KO mice had reduced scotopic and photopic acuity and contrast sensitivity compared to WT. IRBP KO mice had a significant reduction in outer nuclear layer (ONL) thickness, PR outer and inner segment, and full retinal thickness (FRT) compared to WT. There were fewer cones in IRBP KO mice. Overall, these results confirm substantial loss of rods and significant loss of cones within 30 days. Absence of IRBP resulted in cone circuit damage, reducing photopic flicker, contrast sensitivity, and spatial frequency sensitivity. The c-wave was reduced and accelerated in response to bright steps of light. This result also suggests altered retinal pigment epithelium activity. There appears to be a compensatory mechanism such as higher synaptic gain between PRs and bipolar cells since the loss of the b-wave did not linearly follow the loss of rods, or the a-wave. Scotopic CFF is normal despite thinning of ONL and reduced scotopic electroretinogram (ERG) in IRBP KO mice, suggesting either a redundancy or plasticity in circuits detecting (encoding) scotopic flicker at threshold even with substantial rod loss.


Assuntos
Proteínas do Olho , Visão Noturna , Retina , Proteínas de Ligação ao Retinol , Retina/fisiologia , Retina/ultraestrutura , Estimulação Luminosa , Proteínas do Olho/genética , Proteínas do Olho/fisiologia , Proteínas de Ligação ao Retinol/genética , Proteínas de Ligação ao Retinol/fisiologia , Camundongos Knockout , Animais , Camundongos , Fusão Flicker/genética , Fusão Flicker/fisiologia , Visão de Cores/genética , Visão de Cores/fisiologia , Acuidade Visual/genética , Acuidade Visual/fisiologia , Visão Noturna/genética , Visão Noturna/fisiologia , Tomografia de Coerência Óptica , Masculino , Feminino
2.
Adv Exp Med Biol ; 1074: 145-150, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29721938

RESUMO

A visual response to flickering light requires complex retinal computation, and thus ERG measures are an excellent test of retinal circuit fidelity. Critical flicker frequency (CFF) is the frequency at which the retinal response is no longer modulated. Traditionally, CFF is obtained with a series of steady flicker stimuli with increasing frequencies. However, this method is slow and susceptible to experimental drift and/or adaptational effects. The current study compares the steady flicker method to CFF measurements obtained using a frequency sweep protocol. We introduce a light source programmed to produce a linear sweep of frequencies in a single trial. Using the traditional steady flicker method and a criterion response of 3 µV, we obtained a scotopic CFF of 18.4 ± 0.66 Hz and a photopic CFF of 44.4 ± 1.67 Hz. Our sweep flicker method, used on the same animals, produces a waveform best analyzed by Fourier transform; wherein a 6.18 log µV2 threshold was found to yield CFF values equal to those of the steady flicker method. Thus, the two flicker ERG techniques give comparable results, under both dark- and light-adapted conditions, and the flicker sweep method is faster to administer and analyze and may be less susceptible to blinking, breathing, and eye movement artifacts.


Assuntos
Visão de Cores/fisiologia , Adaptação à Escuridão/fisiologia , Eletrorretinografia/métodos , Fusão Flicker , Visão Noturna/fisiologia , Animais , Feminino , Análise de Fourier , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Cells ; 9(3)2020 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-32245241

RESUMO

Patients with certain defects in the dehydrodolichyl diphosphate synthase (DHDDS) gene (RP59; OMIM #613861) exhibit classic symptoms of retinitis pigmentosa, as well as macular changes, suggestive of retinal pigment epithelium (RPE) involvement. The DHDDS enzyme is ubiquitously required for several pathways of protein glycosylation. We wish to understand the basis for selective ocular pathology associated with certain DHDDS mutations and the contribution of specific ocular cell types to the pathology of mutant Dhdds-mediated retinal degeneration. To circumvent embryonic lethality associated with Dhdds knockout, we generated a Cre-dependent knockout allele of murine Dhdds (Dhddsflx/flx). We used targeted Cre expression to study the importance of the enzyme in the RPE. Structural alterations of the RPE and retina including reduction in outer retinal thickness, cell layer disruption, and increased RPE hyper-reflectivity were apparent at one postnatal month. At three months, RPE and photoreceptor disruption was observed non-uniformly across the retina as well as RPE transmigration into the photoreceptor layer, external limiting membrane descent towards the RPE, and patchy loss of photoreceptors. Functional loss measured by electroretinography was consistent with structural loss showing scotopic a- and b-wave reductions of 83% and 77%, respectively, at three months. These results indicate that RPE dysfunction contributes to DHDDS mutation-mediated pathology and suggests a more complicated disease mechanism than simply disruption of glycosylation.


Assuntos
Alquil e Aril Transferases/metabolismo , Degeneração Retiniana/enzimologia , Degeneração Retiniana/patologia , Epitélio Pigmentado da Retina/enzimologia , Epitélio Pigmentado da Retina/patologia , Animais , Atrofia , Visão de Cores , Eletrorretinografia , Integrases/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Visão Noturna , Fenótipo , Células Fotorreceptoras de Vertebrados/patologia , Reprodutibilidade dos Testes , Degeneração Retiniana/fisiopatologia , Epitélio Pigmentado da Retina/fisiopatologia , Epitélio Pigmentado da Retina/ultraestrutura , Tomografia de Coerência Óptica
4.
Sci Rep ; 7: 42545, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28198469

RESUMO

The Cngb1 locus-encoded ß-subunit of rod cGMP-gated cation channel and associated glutamic acid rich proteins (GARPs) are required for phototransduction, disk morphogenesis, and rod structural integrity. To probe individual protein structure/function of the GARPs, we have characterized several transgenic mouse lines selectively restoring GARPs on a Cngb1 knockout (X1-/-) mouse background. Optical coherence tomography (OCT), light and transmission electron microscopy (TEM), and electroretinography (ERG) were used to analyze 6 genotypes including WT at three and ten weeks postnatal. Comparison of aligned histology/OCT images demonstrated that GARP2 accelerates the rate of degeneration. ERG results are consistent with the structural analyses showing the greatest attenuation of function when GARP2 is present. Even 100-fold or more overexpression of GARP1 could not accelerate degeneration as rapidly as GARP2, and when co-expressed GARP1 attenuated the structural and functional deficits elicited by GARP2. These results indicate that the GARPs are not fully interchangeable and thus, likely have separate and distinct functions in the photoreceptor. We also present a uniform murine OCT layer naming nomenclature system that is consistent with human retina layer designations to standardize murine OCT, which will facilitate data evaluation across different laboratories.


Assuntos
GMP Cíclico/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Proteínas do Tecido Nervoso/deficiência , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Alelos , Animais , Canais de Cátion Regulados por Nucleotídeos Cíclicos/deficiência , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Modelos Animais de Doenças , Eletrorretinografia , Ordem dos Genes , Loci Gênicos , Genótipo , Camundongos , Camundongos Knockout , Microscopia , Degeneração Retiniana/diagnóstico , Células Fotorreceptoras Retinianas Bastonetes/patologia , Células Fotorreceptoras Retinianas Bastonetes/ultraestrutura , Tomografia de Coerência Óptica
5.
Neuroscience ; 354: 43-53, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28450267

RESUMO

Alzheimer's disease (AD), a debilitating neurodegenerative illness, is characterized by neuronal cell loss, mental deficits, and abnormalities in several neurotransmitter and protein systems. AD is also associated with visual disturbances, but their causes remain unidentified. We hypothesize that the visual disturbances stem from retinal changes, particularly changes in the retinal cholinergic system, and that the etiology in the retina parallels the etiology in the rest of the brain. To test our hypothesis, quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC) were employed to assess changes in acetylcholine receptor (AChR) gene expression, number of retinal cells, and astrocytic gliosis in the Transgenic Swedish, Dutch and Iowa (Tg-SwDI) mouse model as compared to age-matched wild-type (WT). We observed that Tg-SwDI mice showed an initial upregulation of AChR gene expression early on (young adults and middle-aged adults), but a downregulation later on (old adults). Furthermore, transgenic animals displayed significant cell loss in the photoreceptor layer and inner retina of the young adult animals, as well as specific cholinergic cell loss, and increased astrocytic gliosis in the middle-aged adult and old adult groups. Our results suggest that the changes observed in AD cerebrum are also present in the retina and may be, at least in part, responsible for the visual deficits associated with the disease.


Assuntos
Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Cerebelo/patologia , Regulação da Expressão Gênica/genética , Retina/patologia , Transtornos da Visão/etiologia , Envelhecimento , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Cerebelo/metabolismo , Colina O-Acetiltransferase/metabolismo , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Presenilina-1/genética , RNA Mensageiro/metabolismo , Receptores Colinérgicos/metabolismo , Retina/metabolismo , Vias Visuais/patologia
6.
Invest Ophthalmol Vis Sci ; 56(13): 8187-98, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26720471

RESUMO

PURPOSE: The beta subunit of the rod cyclic nucleotide gated channel B1 (CNGB1) contains a proline/glutamic acid-rich N-terminal domain (GARP), which is also present in rods as a non-membrane-bound protein (GARP1/2). GARP2 and CNGB1 bind to retinal degeneration slow (RDS), which is present in the rims of rod and cone outer segment (OS) layers. Here we focus on the importance of RDS/GARP complexes in OS morphogenesis and stability. METHODS: Retinal structure, function, and biochemistry were assessed in GARP2-Tg transgenic mice crossed onto rds+/+, rds+/-, and rds-/- genetic backgrounds. RESULTS: GARP2 expression decreased in animals with reduced RDS levels. Overexpression of GARP2 led to abnormalities in disc stacking in GARP2-Tg/rds+/+ and the accumulation of abnormal vesicular structures in GARP2-Tg/rds+/- OS, as well as alterations in RDS-ROM-1 complex formation. These abnormalities were associated with diminished scotopic a- and b-wave amplitudes in GARP2-Tg mice on both the rds+/+ and rds+/- backgrounds. In addition, severe defects in cone function were observed in GARP2-Tg mice on all RDS backgrounds. CONCLUSIONS: Our results indicate that overexpression of GARP2 significantly exacerbates the defects in rod function associated with RDS haploinsufficiency and leads to further abnormalities in OS ultrastructure. These data also suggest that GARP2 expression in cones can be detrimental to cones. RDS/GARP interactions remain under investigation but are critical for both OS structure and function.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , DNA/genética , Regulação da Expressão Gênica , Células Fotorreceptoras Retinianas Cones/fisiologia , Degeneração Retiniana/genética , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Animais , Western Blotting , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Modelos Animais de Doenças , Eletrorretinografia , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Células Fotorreceptoras Retinianas Cones/ultraestrutura , Degeneração Retiniana/metabolismo , Degeneração Retiniana/fisiopatologia , Células Fotorreceptoras Retinianas Bastonetes/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA