Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
J Proteome Res ; 22(2): 432-441, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36652611

RESUMO

Bottom-up proteomics (BUP) produces rich data, but visualization and analysis are time-consuming and often require programming skills. Many tools analyze these data at the proteome-level, but fewer options exist for individual proteins. Sequence coverage maps are common, but do not proportion peptide intensity. Abundance-based visualization of sequence coverage facilitates detection of protein isoforms, domains, potential truncation sites, peptide "hot-spots", and localization of post-translational modifications (PTMs). Redundant stacked-sequence coverage is an important tool in designing hydrogen-deuterium exchange (HDX) experiments. Visualization tools often lack graphical and tabular-export of processed data which complicates publication of results. Quantitative peptide abundance across amino acid sequences is an essential and missing tool in proteomics toolkits. Here we created PrIntMap-R, an online application that only requires peptide files from a database search and FASTA protein sequences. PrIntMap-R produces a variety of plots for quantitative visualization of coverage; annotation of specific sequences, PTM's, and comparisons of one or many samples overlaid with calculated fold-change or several intensity metrics. We show use-cases including protein phosphorylation, identification of glycosylation, and the optimization of digestion conditions for HDX experiments. PrIntMap-R is freely available, open source, and can run online with no installation, or locally by downloading source code from GitHub.


Assuntos
Peptídeos , Proteômica , Proteômica/métodos , Software , Proteoma/metabolismo , Sequência de Aminoácidos
2.
ACS Omega ; 8(4): 4410-4418, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36743002

RESUMO

N-linked glycosylation is an important post-translational modification that is difficult to identify and quantify in traditional bottom-up proteomics experiments. Enzymatic deglycosylation of proteins by peptide:N-glycosidase F (PNGase F) prior to digestion and subsequent mass spectrometry analysis has been shown to improve coverage of various N-linked glycopeptides, but the inclusion of this step may add up to a day to an already lengthy sample preparation process. An efficient way to integrate deglycosylation with bottom-up proteomics would be a valuable contribution to the glycoproteomics field. Here, we demonstrate a proteomics workflow in which deglycosylation and proteolytic digestion of samples occur simultaneously using suspension trapping (S-Trap). This approach adds no time to standard digestion protocols. Applying this sample preparation strategy to a human serum sample, we demonstrate improved identification of potential N-glycosylated peptides in deglycosylated samples compared with non-deglycosylated samples, identifying 156 unique peptides that contain the N-glycosylation motif (asparagine-X-serine/threonine), the deamidation modification characteristic of PNGase F, and an increase in peptide intensity over a control sample. We expect that this rapid sample preparation strategy will assist in the identification and quantification of both known and potential glycoproteins. Data are available via ProteomeXchange with the identifier PXD037921.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA