Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Int J Radiat Oncol Biol Phys ; 112(5): 1269-1278, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34963556

RESUMO

PURPOSE: Tumor-treating fields (TTFields) are an antimitotic treatment modality that interfere with glioblastoma (GBM) cell division and organelle assembly by delivering low-intensity, alternating electric fields to the tumor. A previous analysis from the pivotal EF-14 trial demonstrated a clear correlation between TTFields dose density at the tumor bed and survival in patients treated with TTFields. This study tests the hypothesis that the antimitotic effects of TTFields result in measurable changes in the location and patterns of progression of newly diagnosed GBM. METHODS AND MATERIALS: Magnetic resonance images of 428 newly diagnosed GBM patients who participated in the pivotal EF-14 trial were reviewed, and the rates at which distant progression occurred in the TTFields treatment and control arm were compared. Realistic head models of 252 TTFields-treated patients were created, and TTFields intensity distributions were calculated using a finite element method. The TTFields dose was calculated within regions of the tumor bed and normal brain, and its relationship with progression was determined. RESULTS: Distant progression was frequently observed in the TTFields-treated arm, and distant lesions in the TTFields-treated arm appeared at greater distances from the primary lesion than in the control arm. Distant progression correlated with improved clinical outcome in the TTFields patients, with no such correlation observed in the controls. Areas of normal brain that remained normal were exposed to higher TTFields doses compared with normal brain that subsequently exhibited neoplastic progression. Additionally, the average dose to areas of the enhancing tumor that returned to normal was significantly higher than in the areas of the normal brain that progressed to enhancing tumor. CONCLUSIONS: There was a direct correlation between TTFields dose distribution and tumor response, confirming the therapeutic activity of TTFields and the rationale for optimizing array placement to maximize the TTFields dose in areas at highest risk of progression, as well as array layout adaptation after progression.


Assuntos
Antimitóticos , Neoplasias Encefálicas , Terapia por Estimulação Elétrica , Glioblastoma , Antimitóticos/uso terapêutico , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Terapia por Estimulação Elétrica/métodos , Glioblastoma/diagnóstico por imagem , Glioblastoma/radioterapia , Humanos , Imageamento por Ressonância Magnética
2.
Mol Cell Biol ; 22(16): 5989-99, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12138207

RESUMO

Wnt signaling maintains preadipocytes in an undifferentiated state. When Wnt signaling is enforced, 3T3-L1 preadipocytes no longer undergo adipocyte conversion in response to adipogenic medium. Here we used microarray analyses to identify subsets of genes whose expression is aberrant when differentiation is blocked through enforced Wnt signaling. Furthermore, we used the microarray data to identify potentially important adipocyte genes and chose one of these, the liver X receptor alpha (LXR alpha), for further analyses. Our studies indicate that enforced Wnt signaling blunts the changes in gene expression that correspond to mitotic clonal expansion, suggesting that Wnt signaling inhibits adipogenesis in part through dysregulation of the cell cycle. Experiments designed to uncover the potential role of LXR alpha in adipogenesis revealed that this transcription factor, unlike CCAAT/enhancer binding protein alpha and peroxisome proliferator-activated receptor gamma, is not adipogenic but rather inhibits adipogenesis if inappropriately expressed and activated. However, LXR alpha has several important roles in adipocyte function. Our studies show that this nuclear receptor increases basal glucose uptake and glycogen synthesis in 3T3-L1 adipocytes. In addition, LXR alpha increases cholesterol synthesis and release of nonesterified fatty acids. Finally, treatment of mice with an LXR alpha agonist results in increased serum levels of glycerol and nonesterified fatty acids, consistent with increased lipolysis within adipose tissue. These findings demonstrate new metabolic roles for LXR alpha and increase our understanding of adipogenesis.


Assuntos
Adipócitos/fisiologia , Diferenciação Celular/genética , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas/metabolismo , Receptores Citoplasmáticos e Nucleares , Receptores do Ácido Retinoico/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Proteínas de Peixe-Zebra , Adipócitos/efeitos dos fármacos , Tecido Adiposo/citologia , Animais , Anticolesterolemiantes/farmacologia , Diferenciação Celular/fisiologia , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ácidos Graxos não Esterificados/sangue , Feminino , Perfilação da Expressão Gênica , Glicerol/sangue , Humanos , Hidrocarbonetos Fluorados , Ligantes , Metabolismo dos Lipídeos , Receptores X do Fígado , Camundongos , Camundongos Endogâmicos C57BL , Receptores Nucleares Órfãos , Fenótipo , Proteínas Proto-Oncogênicas/genética , Receptores do Ácido Retinoico/genética , Receptores dos Hormônios Tireóideos/genética , Transdução de Sinais/fisiologia , Sulfonamidas , Proteínas Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA