Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Nature ; 551(7681): 498-502, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29143815

RESUMO

Aegilops tauschii is the diploid progenitor of the D genome of hexaploid wheat (Triticum aestivum, genomes AABBDD) and an important genetic resource for wheat. The large size and highly repetitive nature of the Ae. tauschii genome has until now precluded the development of a reference-quality genome sequence. Here we use an array of advanced technologies, including ordered-clone genome sequencing, whole-genome shotgun sequencing, and BioNano optical genome mapping, to generate a reference-quality genome sequence for Ae. tauschii ssp. strangulata accession AL8/78, which is closely related to the wheat D genome. We show that compared to other sequenced plant genomes, including a much larger conifer genome, the Ae. tauschii genome contains unprecedented amounts of very similar repeated sequences. Our genome comparisons reveal that the Ae. tauschii genome has a greater number of dispersed duplicated genes than other sequenced genomes and its chromosomes have been structurally evolving an order of magnitude faster than those of other grass genomes. The decay of colinearity with other grass genomes correlates with recombination rates along chromosomes. We propose that the vast amounts of very similar repeated sequences cause frequent errors in recombination and lead to gene duplications and structural chromosome changes that drive fast genome evolution.


Assuntos
Genoma de Planta , Filogenia , Poaceae/genética , Triticum/genética , Mapeamento Cromossômico , Diploide , Evolução Molecular , Duplicação Gênica , Genes de Plantas/genética , Genômica/normas , Poaceae/classificação , Recombinação Genética/genética , Análise de Sequência de DNA/normas , Triticum/classificação
2.
Plant J ; 107(1): 303-314, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33893684

RESUMO

Until recently, achieving a reference-quality genome sequence for bread wheat was long thought beyond the limits of genome sequencing and assembly technology, primarily due to the large genome size and > 80% repetitive sequence content. The release of the chromosome scale 14.5-Gb IWGSC RefSeq v1.0 genome sequence of bread wheat cv. Chinese Spring (CS) was, therefore, a milestone. Here, we used a direct label and stain (DLS) optical map of the CS genome together with a prior nick, label, repair and stain (NLRS) optical map, and sequence contigs assembled with Pacific Biosciences long reads, to refine the v1.0 assembly. Inconsistencies between the sequence and maps were reconciled and gaps were closed. Gap filling and anchoring of 279 unplaced scaffolds increased the total length of pseudomolecules by 168 Mb (excluding Ns). Positions and orientations were corrected for 233 and 354 scaffolds, respectively, representing 10% of the genome sequence. The accuracy of the remaining 90% of the assembly was validated. As a result of the increased contiguity, the numbers of transposable elements (TEs) and intact TEs have increased in IWGSC RefSeq v2.1 compared with v1.0. In total, 98% of the gene models identified in v1.0 were mapped onto this new assembly through development of a dedicated approach implemented in the MAGAAT pipeline. The numbers of high-confidence genes on pseudomolecules have increased from 105 319 to 105 534. The reconciled assembly enhances the utility of the sequence for genetic mapping, comparative genomics, gene annotation and isolation, and more general studies on the biology of wheat.


Assuntos
Mapeamento Cromossômico/métodos , Genoma de Planta , Triticum/genética , Cromossomos Artificiais Bacterianos , Cromossomos de Plantas/química , Elementos de DNA Transponíveis , Anotação de Sequência Molecular
3.
New Phytol ; 228(3): 1011-1026, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32569398

RESUMO

Powdery mildew poses severe threats to wheat production. The most sustainable way to control this disease is through planting resistant cultivars. We report the map-based cloning of the powdery mildew resistance allele Pm5e from a Chinese wheat landrace. We applied a two-step bulked segregant RNA sequencing (BSR-Seq) approach in developing tightly linked or co-segregating markers to Pm5e. The first BSR-Seq used phenotypically contrasting bulks of recombinant inbred lines (RILs) to identify Pm5e-linked markers. The second BSR-Seq utilized bulks of genetic recombinants screened from a fine-mapping population to precisely quantify the associated genomic variation in the mapping interval, and identified the Pm5e candidate genes. The function of Pm5e was validated by transgenic assay, loss-of-function mutants and haplotype association analysis. Pm5e encodes a nucleotide-binding domain leucine-rich-repeat-containing (NLR) protein. A rare nonsynonymous single nucleotide variant (SNV) within the C-terminal leucine rich repeat (LRR) domain is responsible for the gain of powdery mildew resistance function of Pm5e, an allele endemic to wheat landraces of Shaanxi province of China. Results from this study demonstrate the value of landraces in discovering useful genes for modern wheat breeding. The key SNV associated with powdery mildew resistance will be useful for marker-assisted selection of Pm5e in wheat breeding programs.


Assuntos
Resistência à Doença , Triticum , China , Resistência à Doença/genética , Genes de Plantas , Nucleotídeos , Melhoramento Vegetal , Doenças das Plantas/genética , Triticum/genética
4.
Theor Appl Genet ; 133(9): 2545-2554, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32494869

RESUMO

KEY MESSAGE: A locus for perennial growth was mapped on Lophopyrum elongatum chromosome arm 4ES and introgressed into the wheat genome. Evidence was obtained that in addition to chromosome 4E, other L. elongatum chromosomes control perennial growth. Monocarpy versus polycarpy is one of the fundamental developmental dichotomies in flowering plants. Advances in the understanding of the genetic basis of this dichotomy are important for basic biological reasons and practically for genetic manipulation of growth development in economically important plants. Nine wheat introgression lines (ILs) harboring germplasm of the Lophopyrum elongatum genome present in the octoploid amphiploid Triticum aestivum cv. Chinese Spring (subgenomes AABBDD) × L. elongatum (genomes EE) were selected from a population of ILs developed earlier. These ILs were employed here in genomic analyses of post-sexual cycle regrowth (PSCR), which is a component of polycarpy in caespitose L. elongatum. Analyses of disomic substitution (DS) lines confirmed that L. elongatum chromosome 4E confers PSCR on wheat. The gene was mapped into a short distal region of L. elongatum arm 4ES and was tentatively named Pscr1. ILs harboring recombined chromosomes with 4ES segments, including Pscr1, incorporated into the distal part of the 4DS chromosome arm were identified. Based on the location, Pscr1 is not orthologous with the rice rhizome-development gene Rhz2 located on rice chromosome Os3, which is homoeologous with chromosome 4E, but it may correspond to the Teosinte branched1 (TB1) gene, which is located in the introgressed region in the L. elongatum and Ae. tauschii genomes. A hexaploid IL harboring a large portion of the E-genome but devoid of chromosome 4E also expressed PSCR, which provided evidence that perennial growth is controlled by genes on other L. elongatum chromosomes in addition to 4E.


Assuntos
Genes de Plantas , Melhoramento Vegetal , Poaceae/crescimento & desenvolvimento , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Genótipo , Poaceae/genética , Polimorfismo de Nucleotídeo Único , Poliploidia
5.
Theor Appl Genet ; 133(4): 1227-1241, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31980837

RESUMO

KEY MESSAGE: We introgressed wheatgrass germplasm from the octoploid amphiploid Triticum aestivum× Lophopyrum elongatum into wheat by manipulating the wheat Ph1 gene and discovered and characterized 130 introgression lines harboring single or, in various combinations, complete and recombined L. elongatum chromosomes. Diploid wheatgrass Lophopyrum elongatum (genomes EE) possesses valuable traits for wheat genetics and breeding. We evaluated several strategies for introgression of this germplasm into wheat. To detect it, we developed and validated multiplexed sets of Sequenom MassARRAY single nucleotide polymorphism (SNP) markers, which differentiated disomic and monosomic L. elongatum chromosomes from wheat chromosomes. We identified 130 introgression lines (ILs), which harbored 108 complete and 89 recombined L. elongatum chromosomes. Of the latter, 59 chromosomes were recombined by one or more crossovers and 30 were involved in centromeric (Robertsonian) translocations or were telocentric. To identify wheat chromosomes substituted for or recombined with L. elongatum chromosomes, we genotyped the ILs with the wheat 90-K Infinium SNP array. We found that most of the wheat 90-K probes correctly detected their targets in the L. elongatum genome and showed that some wheat SNPs are ancient and had originated prior to the divergence of the wheat and L. elongatum lineages. Of the 130 ILs, 52% were homozygous for Ph1 deletion and thus are staged to be recombined further. We failed to detect in the L. elongatum genome the 4/5 reciprocal translocation that has been reported in Thinopyrum bessarabicum and several other Triticeae genomes.


Assuntos
Cruzamentos Genéticos , Genoma de Planta , Endogamia , Ploidias , Poaceae/genética , Triticum/genética , Pão , Cromossomos de Plantas/genética , Marcadores Genéticos , Polimorfismo de Nucleotídeo Único/genética
6.
Plant J ; 95(3): 487-503, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29770515

RESUMO

Homology was searched with genes annotated in the Aegilops tauschii pseudomolecules against genes annotated in the pseudomolecules of tetraploid wild emmer wheat, Brachypodium distachyon, sorghum and rice. Similar searches were performed with genes annotated in the rice pseudomolecules. Matrices of collinear genes and rearrangements in their order were constructed. Optical BioNano genome maps were constructed and used to validate rearrangements unique to the wild emmer and Ae. tauschii genomes. Most common rearrangements were short paracentric inversions and short intrachromosomal translocations. Intrachromosomal translocations outnumbered segmental intrachromosomal duplications. The densities of paracentric inversion lengths were approximated by exponential distributions in all six genomes. Densities of collinear genes along the Ae. tauschii chromosomes were highly correlated with meiotic recombination rates but those of rearrangements were not, suggesting different causes of the erosion of gene collinearity and evolution of major chromosome rearrangements. Frequent rearrangements sharing breakpoints suggested that chromosomes have been rearranged recurrently at some sites. The distal 4 Mb of the short arms of rice chromosomes Os11 and Os12 and corresponding regions in the sorghum, B. distachyon and Triticeae genomes contain clusters of interstitial translocations including from 1 to 7 collinear genes. The rates of acquisition of major rearrangements were greater in the large wild emmer wheat and Ae. tauschii genomes than in the lineage preceding their divergence or in the B. distachyon, rice and sorghum lineages. It is suggested that synergy between large quantities of dynamic transposable elements and annual growth habit have been the primary causes of the fast evolution of the Triticeae genomes.


Assuntos
Evolução Molecular , Genoma de Planta/genética , Genômica , Poaceae/genética , Aegilops/genética , Brachypodium/genética , Mapeamento Cromossômico , Genes de Plantas/genética , Oryza/genética , Análise de Sequência de DNA , Sorghum/genética , Triticum/genética
7.
Theor Appl Genet ; 131(11): 2451-2462, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30141064

RESUMO

KEY MESSAGE: Comparison of genome sequences of wild emmer wheat and Aegilops tauschii suggests a novel scenario of the evolution of rearranged wheat chromosomes 4A, 5A, and 7B. Past research suggested that wheat chromosome 4A was subjected to a reciprocal translocation T(4AL;5AL)1 that occurred in the diploid progenitor of the wheat A subgenome and to three major rearrangements that occurred in polyploid wheat: pericentric inversion Inv(4AS;4AL)1, paracentric inversion Inv(4AL;4AL)1, and reciprocal translocation T(4AL;7BS)1. Gene collinearity along the pseudomolecules of tetraploid wild emmer wheat (Triticum turgidum ssp. dicoccoides, subgenomes AABB) and diploid Aegilops tauschii (genomes DD) was employed to confirm these rearrangements and to analyze the breakpoints. The exchange of distal regions of chromosome arms 4AS and 4AL due to pericentric inversion Inv(4AS;4AL)1 was detected, and breakpoints were validated with an optical Bionano genome map. Both breakpoints contained satellite DNA. The breakpoints of reciprocal translocation T(4AL;7BS)1 were also found. However, the breakpoints that generated paracentric inversion Inv(4AL;4AL)1 appeared to be collocated with the 4AL breakpoints that had produced Inv(4AS;4AL)1 and T(4AL;7BS)1. Inv(4AS;4AL)1, Inv(4AL;4AL)1, and T(4AL;7BS)1 either originated sequentially, and Inv(4AL;4AL)1 was produced by recurrent chromosome breaks at the same breakpoints that generated Inv(4AS;4AL)1 and T(4AL;7BS)1, or Inv(4AS;4AL)1, Inv(4AL;4AL)1, and T(4AL;7BS)1 originated simultaneously. We prefer the latter hypothesis since it makes fewer assumptions about the sequence of events that produced these chromosome rearrangements.


Assuntos
Inversão Cromossômica , Cromossomos de Plantas/genética , Evolução Molecular , Translocação Genética , Triticum/genética , Mapeamento Cromossômico , DNA Satélite/genética , Genoma de Planta , Poaceae/genética
8.
Genome ; 61(8): 559-565, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29883550

RESUMO

Brachypodium distachyon (n = 5) is a diploid and has been widely used as a genetic model. Brachypodium stacei (n = 10) and B. hybridum (n = 15) are species that are related to B. distachyon, leading to an hypothesis that they are part of a polyploid series based on x = 5. Several lines of evidence suggest that this hypothesis is incorrect and that the genomes of the three taxa may have evolved by a more complex process. We constructed an optical whole-genome BioNano genome (BNG) map for each species and did pairwise alignment of the BNG maps. The maps showed that B. distachyon and B. stacei are both diploid, in spite of B. stacei having twice as many chromosomes as B. distachyon, and that B. hybridum is an allopolyploid formed from hybridization between B. distachyon and B. stacei. This study also demonstrated the use of BNG maps in the detection and quantification of structural variants among the genomes.


Assuntos
Brachypodium/genética , Evolução Molecular , Genoma/genética , Filogenia , Brachypodium/classificação , Cromossomos de Plantas/genética , Diploide , Poliploidia , Especificidade da Espécie
9.
Proc Natl Acad Sci U S A ; 110(19): 7940-5, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23610408

RESUMO

The current limitations in genome sequencing technology require the construction of physical maps for high-quality draft sequences of large plant genomes, such as that of Aegilops tauschii, the wheat D-genome progenitor. To construct a physical map of the Ae. tauschii genome, we fingerprinted 461,706 bacterial artificial chromosome clones, assembled contigs, designed a 10K Ae. tauschii Infinium SNP array, constructed a 7,185-marker genetic map, and anchored on the map contigs totaling 4.03 Gb. Using whole genome shotgun reads, we extended the SNP marker sequences and found 17,093 genes and gene fragments. We showed that collinearity of the Ae. tauschii genes with Brachypodium distachyon, rice, and sorghum decreased with phylogenetic distance and that structural genome evolution rates have been high across all investigated lineages in subfamily Pooideae, including that of Brachypodieae. We obtained additional information about the evolution of the seven Triticeae chromosomes from 12 ancestral chromosomes and uncovered a pattern of centromere inactivation accompanying nested chromosome insertions in grasses. We showed that the density of noncollinear genes along the Ae. tauschii chromosomes positively correlates with recombination rates, suggested a cause, and showed that new genes, exemplified by disease resistance genes, are preferentially located in high-recombination chromosome regions.


Assuntos
Mapeamento de Sequências Contíguas , Genoma de Planta , Poaceae/genética , Centrômero/ultraestrutura , Cromossomos Artificiais Bacterianos , Cromossomos de Plantas/ultraestrutura , Evolução Molecular , Genes de Plantas , Marcadores Genéticos , Polimorfismo de Nucleotídeo Único , Recombinação Genética , Análise de Sequência de DNA , Triticum/genética
10.
BMC Genomics ; 13: 354, 2012 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-22849334

RESUMO

BACKGROUND: A genome-wide set of single nucleotide polymorphisms (SNPs) is a valuable resource in genetic research and breeding and is usually developed by re-sequencing a genome. If a genome sequence is not available, an alternative strategy must be used. We previously reported the development of a pipeline (AGSNP) for genome-wide SNP discovery in coding sequences and other single-copy DNA without a complete genome sequence in self-pollinating (autogamous) plants. Here we updated this pipeline for SNP discovery in outcrossing (allogamous) species and demonstrated its efficacy in SNP discovery in walnut (Juglans regia L.). RESULTS: The first step in the original implementation of the AGSNP pipeline was the construction of a reference sequence and the identification of single-copy sequences in it. To identify single-copy sequences, multiple genome equivalents of short SOLiD reads of another individual were mapped to shallow genome coverage of long Sanger or Roche 454 reads making up the reference sequence. The relative depth of SOLiD reads was used to filter out repeated sequences from single-copy sequences in the reference sequence. The second step was a search for SNPs between SOLiD reads and the reference sequence. Polymorphism within the mapped SOLiD reads would have precluded SNP discovery; hence both individuals had to be homozygous. The AGSNP pipeline was updated here for using SOLiD or other type of short reads of a heterozygous individual for these two principal steps. A total of 32.6X walnut genome equivalents of SOLiD reads of vegetatively propagated walnut scion cultivar 'Chandler' were mapped to 48,661 'Chandler' bacterial artificial chromosome (BAC) end sequences (BESs) produced by Sanger sequencing during the construction of a walnut physical map. A total of 22,799 putative SNPs were initially identified. A total of 6,000 Infinium II type SNPs evenly distributed along the walnut physical map were selected for the construction of an Infinium BeadChip, which was used to genotype a walnut mapping population having 'Chandler' as one of the parents. Genotyping results were used to adjust the filtering parameters of the updated AGSNP pipeline. With the adjusted filtering criteria, 69.6% of SNPs discovered with the updated pipeline were real and could be mapped on the walnut genetic map. A total of 13,439 SNPs were discovered by BES re-sequencing. BESs harboring SNPs were in 677 FPC contigs covering 98% of the physical map of the walnut genome. CONCLUSION: The updated AGSNP pipeline is a versatile SNP discovery tool for a high-throughput, genome-wide SNP discovery in both autogamous and allogamous species. With this pipeline, a large set of SNPs were identified in a single walnut cultivar.


Assuntos
Algoritmos , Mapeamento Cromossômico/métodos , Genoma de Planta , Técnicas de Genotipagem , Juglans/genética , Polimorfismo de Nucleotídeo Único , Cromossomos Artificiais Bacterianos , Etiquetas de Sequências Expressas , Estudo de Associação Genômica Ampla , Fases de Leitura Aberta , Polinização/fisiologia , Análise de Sequência de DNA
11.
J Hered ; 103(3): 426-41, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22378960

RESUMO

It is widely believed that hexaploid wheat originated via hybridization of hulled tetraploid emmer with Aegilops tauschii (genomes DD) and that the nascent hexaploid was spelt, from which free-threshing wheat evolved by mutations. To reassess the role of spelt in the evolution of Triticum aestivum, 4 disomic substitution lines of Ae. tauschii chromosome 2D in Chinese Spring wheat were developed and one of them was used to map the Tg locus, which controls glume tenacity in Ae. tauschii, relative to simple sequence repeat (SSR) and expressed sequence tag loci on wheat chromosome 2D. The segregation of SSR markers was used to assess the presence of Tg alleles in 11 accessions of spelt, both from Europe and from Asia. Ten of them had an inactive tg allele in the D genome and most had an active Tg allele in the B genome. This is consistent with spelt being derived from free-threshing hexaploid wheat by hybridization of free-threshing wheat with hulled emmer. It is proposed that the tetraploid parent of hexaploid wheat was not hulled emmer but a free-threshing form of tetraploid wheat.


Assuntos
Triticum/genética , Alelos , Mapeamento Cromossômico , Evolução Molecular , Etiquetas de Sequências Expressas , Genes de Plantas , Loci Gênicos , Especiação Genética , Genótipo , Repetições de Microssatélites/genética , Modelos Genéticos , Fenótipo , Filogenia , Ploidias , Polimorfismo de Nucleotídeo Único , Sementes/classificação , Sementes/genética , Análise de Sequência de DNA , Triticum/classificação
12.
BMC Genomics ; 12: 59, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21266061

RESUMO

BACKGROUND: Many plants have large and complex genomes with an abundance of repeated sequences. Many plants are also polyploid. Both of these attributes typify the genome architecture in the tribe Triticeae, whose members include economically important wheat, rye and barley. Large genome sizes, an abundance of repeated sequences, and polyploidy present challenges to genome-wide SNP discovery using next-generation sequencing (NGS) of total genomic DNA by making alignment and clustering of short reads generated by the NGS platforms difficult, particularly in the absence of a reference genome sequence. RESULTS: An annotation-based, genome-wide SNP discovery pipeline is reported using NGS data for large and complex genomes without a reference genome sequence. Roche 454 shotgun reads with low genome coverage of one genotype are annotated in order to distinguish single-copy sequences and repeat junctions from repetitive sequences and sequences shared by paralogous genes. Multiple genome equivalents of shotgun reads of another genotype generated with SOLiD or Solexa are then mapped to the annotated Roche 454 reads to identify putative SNPs. A pipeline program package, AGSNP, was developed and used for genome-wide SNP discovery in Aegilops tauschii-the diploid source of the wheat D genome, and with a genome size of 4.02 Gb, of which 90% is repetitive sequences. Genomic DNA of Ae. tauschii accession AL8/78 was sequenced with the Roche 454 NGS platform. Genomic DNA and cDNA of Ae. tauschii accession AS75 was sequenced primarily with SOLiD, although some Solexa and Roche 454 genomic sequences were also generated. A total of 195,631 putative SNPs were discovered in gene sequences, 155,580 putative SNPs were discovered in uncharacterized single-copy regions, and another 145,907 putative SNPs were discovered in repeat junctions. These SNPs were dispersed across the entire Ae. tauschii genome. To assess the false positive SNP discovery rate, DNA containing putative SNPs was amplified by PCR from AL8/78 and AS75 and resequenced with the ABI 3730 xl. In a sample of 302 randomly selected putative SNPs, 84.0% in gene regions, 88.0% in repeat junctions, and 81.3% in uncharacterized regions were validated. CONCLUSION: An annotation-based genome-wide SNP discovery pipeline for NGS platforms was developed. The pipeline is suitable for SNP discovery in genomic libraries of complex genomes and does not require a reference genome sequence. The pipeline is applicable to all current NGS platforms, provided that at least one such platform generates relatively long reads. The pipeline package, AGSNP, and the discovered 497,118 Ae. tauschii SNPs can be accessed at (http://avena.pw.usda.gov/wheatD/agsnp.shtml).


Assuntos
Genoma de Planta/genética , Anotação de Sequência Molecular/métodos , Poaceae/genética , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA/métodos
13.
G3 (Bethesda) ; 11(12)2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34515796

RESUMO

Aegilops tauschii is the donor of the D subgenome of hexaploid wheat and an important genetic resource. The reference-quality genome sequence Aet v4.0 for Ae. tauschii acc. AL8/78 was therefore an important milestone for wheat biology and breeding. Further advances in sequencing acc. AL8/78 and release of the Aet v5.0 sequence assembly are reported here. Two new optical maps were constructed and used in the revision of pseudomolecules. Gaps were closed with Pacific Biosciences long-read contigs, decreasing the gap number by 38,899. Transposable elements and protein-coding genes were reannotated. The number of annotated high-confidence genes was reduced from 39,635 in Aet v4.0 to 32,885 in Aet v5.0. A total of 2245 biologically important genes, including those affecting plant phenology, grain quality, and tolerance of abiotic stresses in wheat, was manually annotated and disease-resistance genes were annotated by a dedicated pipeline. Disease-resistance genes encoding nucleotide-binding site domains, receptor-like protein kinases, and receptor-like proteins were preferentially located in distal chromosome regions, whereas those encoding transmembrane coiled-coil proteins were dispersed more evenly along the chromosomes. Discovery, annotation, and expression analyses of microRNA (miRNA) precursors, mature miRNAs, and phasiRNAs are reported, including miRNA target genes. Other small RNAs, such as hc-siRNAs and tRFs, were characterized. These advances enhance the utility of the Ae. tauschii genome sequence for wheat genetics, biotechnology, and breeding.


Assuntos
Aegilops , Genoma de Planta , Melhoramento Vegetal , Poaceae/genética , Triticum/genética
14.
BMC Genomics ; 11: 692, 2010 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-21129228

RESUMO

BACKGROUND: A five-dimensional (5-D) clone pooling strategy for screening of bacterial artificial chromosome (BAC) clones with molecular markers utilizing highly-parallel Illumina GoldenGate assays and PCR facilitates high-throughput BAC clone and BAC contig anchoring on a genetic map. However, this strategy occasionally needs manual PCR to deconvolute pools and identify truly positive clones. RESULTS: A new implementation is reported here for our previously reported clone pooling strategy. Row and column pools of BAC clones are divided into sub-pools with 1~ 2 x genome coverage. All BAC pools are screened with Illumina's GoldenGate assay and the BAC pools are deconvoluted to identify individual positive clones. Putative positive BAC clones are then further analyzed to find positive clones on the basis of them being neighbours in a contig. An exhaustive search or brute force algorithm was designed for this deconvolution and integrated into a newly developed software tool, FPCBrowser, for analyzing clone pooling data. This algorithm was used with empirical data for 55 Illumina GoldenGate SNP assays detecting SNP markers mapped on Aegilops tauschii chromosome 2D and Ae. tauschii contig maps. Clones in single contigs were successfully assigned to 48 (87%) specific SNP markers on the map with 91% precision. CONCLUSION: A new implementation of 5-D BAC clone pooling strategy employing both GoldenGate assay screening and assembled BAC contigs is shown here to be a high-throughput, low cost, rapid, and feasible approach to screening BAC libraries and anchoring BAC clones and contigs on genetic maps. The software FPCBrowser with the integrated clone deconvolution algorithm has been developed and is downloadable at http://avena.pw.usda.gov/wheatD/fpcbrowser.shtml.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Poaceae/genética , Algoritmos , Clonagem Molecular , Marcadores Genéticos , Internet , Polimorfismo de Nucleotídeo Único/genética , Software
15.
BMC Genomics ; 11: 382, 2010 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-20553621

RESUMO

BACKGROUND: Physical maps employing libraries of bacterial artificial chromosome (BAC) clones are essential for comparative genomics and sequencing of large and repetitive genomes such as those of the hexaploid bread wheat. The diploid ancestor of the D-genome of hexaploid wheat (Triticum aestivum), Aegilops tauschii, is used as a resource for wheat genomics. The barley diploid genome also provides a good model for the Triticeae and T. aestivum since it is only slightly larger than the ancestor wheat D genome. Gene co-linearity between the grasses can be exploited by extrapolating from rice and Brachypodium distachyon to Ae. tauschii or barley, and then to wheat. RESULTS: We report the use of Ae. tauschii for the construction of the physical map of a large distal region of chromosome arm 3DS. A physical map of 25.4 Mb was constructed by anchoring BAC clones of Ae. tauschii with 85 EST on the Ae. tauschii and barley genetic maps. The 24 contigs were aligned to the rice and B. distachyon genomic sequences and a high density SNP genetic map of barley. As expected, the mapped region is highly collinear to the orthologous chromosome 1 in rice, chromosome 2 in B. distachyon and chromosome 3H in barley. However, the chromosome scale of the comparative maps presented provides new insights into grass genome organization. The disruptions of the Ae. tauschii-rice and Ae. tauschii-Brachypodium syntenies were identical. We observed chromosomal rearrangements between Ae. tauschii and barley. The comparison of Ae. tauschii physical and genetic maps showed that the recombination rate across the region dropped from 2.19 cM/Mb in the distal region to 0.09 cM/Mb in the proximal region. The size of the gaps between contigs was evaluated by comparing the recombination rate along the map with the local recombination rates calculated on single contigs. CONCLUSIONS: The physical map reported here is the first physical map using fingerprinting of a complete Triticeae genome. This study demonstrates that global fingerprinting of the large plant genomes is a viable strategy for generating physical maps. Physical maps allow the description of the co-linearity between wheat and grass genomes and provide a powerful tool for positional cloning of new genes.


Assuntos
Impressões Digitais de DNA , Evolução Molecular , Genoma de Planta/genética , Mapeamento Físico do Cromossomo , Poaceae/genética , Cromossomos Artificiais Bacterianos/genética , Cromossomos de Plantas/genética , Hordeum/genética , Oryza/genética , Poaceae/efeitos da radiação , Recombinação Genética/genética , Deleção de Sequência/efeitos da radiação , Sintenia/genética , Triticum/genética , Raios X
16.
BMC Genomics ; 11: 702, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-21156062

RESUMO

BACKGROUND: A genome-wide assessment of nucleotide diversity in a polyploid species must minimize the inclusion of homoeologous sequences into diversity estimates and reliably allocate individual haplotypes into their respective genomes. The same requirements complicate the development and deployment of single nucleotide polymorphism (SNP) markers in polyploid species. We report here a strategy that satisfies these requirements and deploy it in the sequencing of genes in cultivated hexaploid wheat (Triticum aestivum, genomes AABBDD) and wild tetraploid wheat (Triticum turgidum ssp. dicoccoides, genomes AABB) from the putative site of wheat domestication in Turkey. Data are used to assess the distribution of diversity among and within wheat genomes and to develop a panel of SNP markers for polyploid wheat. RESULTS: Nucleotide diversity was estimated in 2114 wheat genes and was similar between the A and B genomes and reduced in the D genome. Within a genome, diversity was diminished on some chromosomes. Low diversity was always accompanied by an excess of rare alleles. A total of 5,471 SNPs was discovered in 1791 wheat genes. Totals of 1,271, 1,218, and 2,203 SNPs were discovered in 488, 463, and 641 genes of wheat putative diploid ancestors, T. urartu, Aegilops speltoides, and Ae. tauschii, respectively. A public database containing genome-specific primers, SNPs, and other information was constructed. A total of 987 genes with nucleotide diversity estimated in one or more of the wheat genomes was placed on an Ae. tauschii genetic map, and the map was superimposed on wheat deletion-bin maps. The agreement between the maps was assessed. CONCLUSIONS: In a young polyploid, exemplified by T. aestivum, ancestral species are the primary source of genetic diversity. Low effective recombination due to self-pollination and a genetic mechanism precluding homoeologous chromosome pairing during polyploid meiosis can lead to the loss of diversity from large chromosomal regions. The net effect of these factors in T. aestivum is large variation in diversity among genomes and chromosomes, which impacts the development of SNP markers and their practical utility. Accumulation of new mutations in older polyploid species, such as wild emmer, results in increased diversity and its more uniform distribution across the genome.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Variação Genética , Genoma de Planta/genética , Nucleotídeos/genética , Triticum/genética , Códon/genética , Bases de Dados Genéticas , Etiquetas de Sequências Expressas , Deleção de Genes , Genes de Plantas/genética , Ligação Genética , Loci Gênicos/genética , Haplótipos/genética , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único/genética , Poliploidia
17.
Plants (Basel) ; 9(10)2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33050178

RESUMO

MicroRNAs (miRNAs) are important factors for the post-transcriptional regulation of protein-coding genes in plants and animals. They are discovered either by sequencing small RNAs or computationally. We employed a sequence-homology-based computational approach to identify conserved miRNAs and their target genes in Persian (English) walnut, Juglans regia, and its North American wild relative, J. microcarpa. A total of 119 miRNA precursors (pre-miRNAs) were detected in the J. regia genome and 121 in the J. microcarpa genome and miRNA target genes were predicted and their functional annotations were performed in both genomes. In the J. regia genome, 325 different genes were targets; 87.08% were regulated by transcript cleavage and 12.92% by translation repression. In the J. microcarpa genome, 316 different genes were targets; 88.92% were regulated by transcript cleavage and 11.08% were regulated by translation repression. Totals of 1.3% and 2.0% of all resistance gene analogues (RGA) and 2.7% and 2.6% of all transcription factors (TFs) were regulated by miRNAs in the J. regia and J. microcarpa genomes, respectively. Juglans genomes evolved by a whole genome duplication (WGD) and consist of eight pairs of fractionated homoeologous chromosomes. Within each pair, the chromosome that has more genes with greater average transcription also harbors more pre-miRNAs and more target genes than its homoeologue. While only minor differences were detected in pre-miRNAs between the J. regia and J. microcarpa genomes, about one-third of the pre-miRNA loci were not conserved between homoeologous chromosome within each genome. Pre-miRNA and their corresponding target genes showed a tendency to be collocated within a subgenome.

18.
Nat Commun ; 11(1): 680, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32015344

RESUMO

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most destructive diseases that pose a great threat to wheat production. Wheat landraces represent a rich source of powdery mildew resistance. Here, we report the map-based cloning of powdery mildew resistance gene Pm24 from Chinese wheat landrace Hulutou. It encodes a tandem kinase protein (TKP) with putative kinase-pseudokinase domains, designated WHEAT TANDEM KINASE 3 (WTK3). The resistance function of Pm24 was validated by transgenic assay, independent mutants, and allelic association analyses. Haplotype analysis revealed that a rare 6-bp natural deletion of lysine-glycine codons, endemic to wheat landraces of Shaanxi Province, China, in the kinase I domain (Kin I) of WTK3 is critical for the resistance function. Transgenic assay of WTK3 chimeric variants revealed that only the specific two amino acid deletion, rather than any of the single or more amino acid deletions, in the Kin I of WTK3 is responsible for gaining the resistance function of WTK3 against the Bgt fungus.


Assuntos
Resistência à Doença/genética , Mutação com Ganho de Função , Genes de Plantas/genética , Doenças das Plantas/microbiologia , Triticum/genética , Ascomicetos/patogenicidade , China , Peróxido de Hidrogênio/metabolismo , Mutagênese , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Domínios Proteicos , Proteínas Quinases/genética , Transformação Genética
19.
BMC Genomics ; 10: 28, 2009 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-19149906

RESUMO

BACKGROUND: Current techniques of screening bacterial artificial chromosome (BAC) libraries for molecular markers during the construction of physical maps are slow, laborious and often assign multiple BAC contigs to a single locus on a genetic map. These limitations are the principal impediment in the construction of physical maps of large eukaryotic genomes. It is hypothesized that this impediment can be overcome by screening multidimensional pools of BAC clones using the highly parallel Illumina GoldenGate assay. RESULTS: To test the efficacy of the Golden Gate assay in BAC library screening, multidimensional pools involving 302976 Aegilops tauschii BAC clones were genotyped for the presence/absence of specific gene sequences with multiplexed Illumina GoldenGate oligonucleotide assays previously used to place single nucleotide polymorphisms on an Ae. tauschii genetic map. Of 1384 allele-informative oligonucleotide assays, 87.6% successfully clustered BAC pools into those positive for a BAC clone harboring a specific gene locus and those negative for it. The location of the positive BAC clones within contigs assembled from 199190 fingerprinted Ae. tauschii BAC clones was used to evaluate the precision of anchoring of BAC clones and contigs on the Ae. tauschii genetic map. For 41 (95%) assays, positive BAC clones were neighbors in single contigs. Those contigs could be unequivocally assigned to loci on the genetic map. For two (5%) assays, positive clones were in two different contigs and the relationships of these contigs to loci on the Ae. tauschii genetic map were equivocal. Screening of BAC libraries with a simple five-dimensional BAC pooling strategy was evaluated and shown to allow direct detection of positive BAC clones without the need for manual deconvolution of BAC clone pools. CONCLUSION: The highly parallel Illumina oligonucleotide assay is shown here to be an efficient tool for screening BAC libraries and a strategy for high-throughput anchoring of BAC contigs on genetic maps during the construction of physical maps of eukaryotic genomes. In most cases, screening of BAC libraries with Illumina oligonucleotide assays results in the unequivocal relationship of BAC clones with loci on the genetic map.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos Artificiais Bacterianos , Biblioteca Gênica , Polimorfismo de Nucleotídeo Único , Triticum/genética , DNA de Plantas/genética , Marcadores Genéticos , Genoma de Planta , Genótipo
20.
G3 (Bethesda) ; 9(3): 619-624, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30622124

RESUMO

Wild emmer (Triticum turgidum ssp. dicoccoides) is the progenitor of all modern cultivated tetraploid wheat. Its genome is large (> 10 Gb) and contains over 80% repeated sequences. The successful whole-genome-shotgun assembly of the wild emmer (accession Zavitan) genome sequence (WEW_v1.0) was an important milestone for wheat genomics. In an effort to improve this assembly, an optical map of accession Zavitan was constructed using Bionano Direct Label and Stain (DLS) technology. The map spanned 10.4 Gb. This map and another map produced earlier by us with the Bionano's Nick Label Repair and Stain (NLRS) technology were used to improve the current wild emmer assembly. The WEW_v1.0 assembly consisted of 151,912 scaffolds. Of them, 3,102 could be confidently aligned on the optical maps. Forty-seven were chimeric. They were disjoined and new scaffolds were assembled with the aid of the optical maps. The total number of scaffolds was reduced from 151,912 to 149,252 and N50 increased from 6.96 Mb to 72.63 Mb. Of the 149,252 scaffolds, 485 scaffolds, which accounted for 97% of the total genome length, were aligned and oriented on genetic maps, and new WEW_v2.0 pseudomolecules were constructed. The new pseudomolecules included 333 scaffolds (68.51 Mb) which were originally unassigned, 226 scaffolds (554.84 Mb) were placed into new locations, and 332 scaffolds (394.83 Mb) were re-oriented. The improved wild emmer genome assembly is an important resource for understanding genomic modification that occurred by domestication.


Assuntos
Genoma de Planta , Triticum/genética , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA