RESUMO
The bromodomain and extraterminal (BET) family of bromodomain-containing proteins are important regulators of the epigenome through their ability to recognize N-acetyl lysine (KAc) post-translational modifications on histone tails. These interactions have been implicated in various disease states and, consequently, disruption of BET-KAc binding has emerged as an attractive therapeutic strategy with a number of small molecule inhibitors now under investigation in the clinic. However, until the utility of these advanced candidates is fully assessed by these trials, there remains scope for the discovery of inhibitors from new chemotypes with alternative physicochemical, pharmacokinetic, and pharmacodynamic profiles. Herein, we describe the discovery of a candidate-quality dimethylpyridone benzimidazole compound which originated from the hybridization of a dimethylphenol benzimidazole series, identified using encoded library technology, with an N-methyl pyridone series identified through fragment screening. Optimization via structure- and property-based design led to I-BET469, which possesses favorable oral pharmacokinetic properties, displays activity in vivo, and is projected to have a low human efficacious dose.
Assuntos
Ensaios de Triagem em Larga Escala/métodos , Proteínas/antagonistas & inibidores , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/farmacologia , Benzimidazóis/química , Benzimidazóis/farmacocinética , Benzimidazóis/farmacologia , Quimiocina CCL2/biossíntese , Cristalografia por Raios X , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Humanos , Interleucina-6/antagonistas & inibidores , Leucócitos/efeitos dos fármacos , Masculino , Camundongos , Modelos Moleculares , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Bibliotecas de Moléculas PequenasRESUMO
Crystallography driven optimisation of a lead derived from similarity searching of the GSK compound collection resulted in the discovery of quinoline-3-carboxamides as highly potent and selective inhibitors of phosphodiesterase 4B. This series has been optimized to GSK256066, a potent PDE4B inhibitor which also inhibits LPS induced production of TNF-alpha from isolated human peripheral blood mononuclear cells with a pIC(50) of 11.1. GSK256066 also has a suitable profile for inhaled dosing.
Assuntos
Anti-Inflamatórios/química , Inibidores da Fosfodiesterase 4 , Inibidores de Fosfodiesterase/química , Quinolinas/química , Administração por Inalação , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/farmacocinética , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/farmacologia , Inibidores de Fosfodiesterase/síntese química , Inibidores de Fosfodiesterase/farmacocinética , Quinolinas/síntese química , Quinolinas/farmacocinética , Ratos , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/metabolismoRESUMO
High-throughput screening (HTS) hits include compounds with undesirable properties. Many filters have been described to identify such hits. Notably, pan-assay interference compounds (PAINS) has been adopted by the community as the standard term to refer to such filters, and very useful guidelines have been adopted by the American Chemical Society (ACS) and subsequently triggered a healthy scientific debate about the pitfalls of draconian use of filters. Using an inhibitory frequency index, we have analyzed in detail the promiscuity profile of the whole GlaxoSmithKline (GSK) HTS collection comprising more than 2 million unique compounds that have been tested in hundreds of screening assays. We provide a comprehensive analysis of many previously published filters and newly described classes of nuisance structures that may serve as a useful source of empirical information to guide the design or growth of HTS collections and hit triaging strategies.
Assuntos
Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Bibliotecas de Moléculas Pequenas/química , Bioensaio/métodosRESUMO
SMYD3 is a lysine methyltransferase overexpressed in colorectal, breast, prostate, and hepatocellular tumors, and has been implicated as an oncogene in human malignancies. Methylation of MEKK2 by SMYD3 is important for regulation of the MEK/ERK pathway, suggesting the possibility of selectively targeting SMYD3 in RAS-driven cancers. Structural and kinetic characterization of SMYD3 was undertaken leading to a co-crystal structure of SMYD3 with a MEKK2-peptide substrate bound, and the observation that SMYD3 follows a partially processive mechanism. These insights allowed for the design of GSK2807, a potent and selective, SAM-competitive inhibitor of SMYD3 (Ki = 14 nM). A high-resolution crystal structure reveals that GSK2807 bridges the gap between the SAM-binding pocket and the substrate lysine tunnel of SMYD3. Taken together, our data demonstrate that small-molecule inhibitors of SMYD3 can be designed to prevent methylation of MEKK2 and these could have potential use as anticancer therapeutics.
Assuntos
Inibidores Enzimáticos/farmacologia , Histona-Lisina N-Metiltransferase/química , Simulação de Acoplamento Molecular , Sítios de Ligação , Inibidores Enzimáticos/química , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , MAP Quinase Quinase Quinase 2/metabolismo , Mutação , Ligação Proteica , S-Adenosilmetionina/farmacologiaRESUMO
FFA2 is a receptor for short-chain fatty acids. Propionate (C3) and 4-chloro-α-(1-methylethyl)-N-2-thiazolyl-benzeneacetamide (4-CMTB), the prototypical synthetic FFA2 agonist, evoke calcium mobilization in neutrophils and inhibit lipolysis in adipocytes via this G-protein-coupled receptor. 4-CMTB contains an N-thiazolylamide motif but no acid group, and 4-CMTB and C3 bind to different sites on FFA2 and show allosteric cooperativity. Recently, FFA2 agonists have been described that contain both N-thiazolylamide and carboxylate groups, reminiscent of bitopic ligands. These are thought to engage the carboxylate-binding site on FFA2, but preliminary evidence suggests they do not bind to the same site as 4-CMTB even though both contain N-thiazolylamide. Here, we describe the characterization of four FFA2 ligands containing both N-thiazolylamide and carboxylate. (R)-3-benzyl-4-((4-(2-chlorophenyl)thiazol-2-yl)(methyl)amino)-4-oxobutanoic acid (compound 14) exhibits allosteric agonism with 4-CMTB but not C3. Three other compounds agonize FFA2 in [(35)S]GTPγS-incorporation or cAMP assays but behave as inverse agonists in yeast-based gene-reporter assays, showing orthosteric antagonism of C3 responses but allosteric antagonism of 4-CMTB responses. Thus, the bitopic-like FFA2 ligands engage the orthosteric site but do not compete at the site of 4-CMTB binding on an FFA2 receptor molecule. Compound 14 activates FFA2 on human neutrophils and mouse adipocytes, but appears not to inhibit lipolysis upon treatment of human primary adipocytes in spite of the presence of a functional FFA2 receptor in these cells. Hence, these new ligands may reveal differences in coupling of FFA2 between human and rodent adipose tissues.
RESUMO
pH indicating resins were prepared by covalently attaching carboxylic acid derivatives of sulfthalein dyes, synthesized using a Suzuki cross-coupling, onto resin beads. The resin-bound indicators showed the expected colour changes according to pH and their behaviour was analysed using a micro UV/Vis spectrometer.
RESUMO
Self-indicating methylisocyanate resin, which functions as both a scavenger and an indicator for amines, was used for in-situ reaction monitoring and purification of a urea based library.
RESUMO
Polystyrene-poly(ethylene glycol) resin-captured cross-linked palladium nanopaticles were prepared via a straightforward route, and their heterogeneous behavior was truly confirmed by various tests. They were applied to aqueous Suzuki cross-coupling reactions with various aryl bromides and recycled up to six times without loss of activity.