Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Biol Chem ; 297(4): 101175, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34499924

RESUMO

The spike protein is the main protein component of the SARS-CoV-2 virion surface. The spike receptor-binding motif mediates recognition of the human angiotensin-converting enzyme 2 receptor, a critical step in infection, and is the preferential target for spike-neutralizing antibodies. Posttranslational modifications of the spike receptor-binding motif have been shown to modulate viral infectivity and host immune response, but these modifications are still being explored. Here we studied asparagine deamidation of the spike protein, a spontaneous event that leads to the appearance of aspartic and isoaspartic residues, which affect both the protein backbone and its charge. We used computational prediction and biochemical experiments to identify five deamidation hotspots in the SARS-CoV-2 spike protein. Asparagine residues 481 and 501 in the receptor-binding motif deamidate with a half-life of 16.5 and 123 days at 37 °C, respectively. Deamidation is significantly slowed at 4 °C, indicating a strong dependence of spike protein molecular aging on environmental conditions. Deamidation of the spike receptor-binding motif decreases the equilibrium constant for binding to the human angiotensin-converting enzyme 2 receptor more than 3.5-fold, yet its high conservation pattern suggests some positive effect on viral fitness. We propose a model for deamidation of the full SARS-CoV-2 virion illustrating how deamidation of the spike receptor-binding motif could lead to the accumulation on the virion surface of a nonnegligible chemically diverse spike population in a timescale of days. Our findings provide a potential mechanism for molecular aging of the spike protein with significant consequences for understanding virus infectivity and vaccine development.


Assuntos
SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Motivos de Aminoácidos , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/patologia , COVID-19/virologia , Humanos , Concentração de Íons de Hidrogênio , Interferometria , Cinética , Ligação Proteica , Domínios Proteicos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , SARS-CoV-2/isolamento & purificação , Alinhamento de Sequência , Glicoproteína da Espícula de Coronavírus/química
2.
J Chem Inf Model ; 62(15): 3577-3588, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35853201

RESUMO

Protein-protein interactions (PPIs) are essential, and modulating their function through PPI-targeted drugs is an important research field. PPI sites are shallow protein surfaces readily accessible to the solvent, thus lacking a proper pocket to fit a drug, while their lack of endogenous ligands prevents drug design by chemical similarity. The development of PPI-blocking compounds is, therefore, a tough challenge. Mixed solvent molecular dynamics has been shown to reveal protein-ligand interaction hot spots in protein active sites by identifying solvent sites (SSs). Furthermore, our group has shown that SSs significantly improve protein-ligand docking. In the present work, we extend our analysis to PPI sites. In particular, we analyzed water, ethanol, and phenol-derived sites in terms of their capacity to predict protein-drug and protein-protein interactions. Subsequently, we show how this information can be incorporated to improve both protein-ligand and protein-protein docking. Finally, we highlight the presence of aromatic clusters as key elements of the corresponding interactions.


Assuntos
Proteínas , Sítios de Ligação , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas/química , Solventes/química
3.
J Chem Inf Model ; 62(7): 1723-1733, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35319884

RESUMO

Mycobacterium tuberculosis (Mtb), the causative agent of Tuberculosis, has 11 eukaryotic-like serine/threonine protein kinases, which play essential roles in cell growth, signal transduction, and pathogenesis. Protein kinase G (PknG) regulates the carbon and nitrogen metabolism by phosphorylation of the glycogen accumulation regulator (GarA) protein at Thr21. Protein kinase B (PknB) is involved in cell wall synthesis and cell shape, as well as phosphorylates GarA but at Thr22. While PknG seems to be constitutively activated and recognition of GarA requires phosphorylation in its unstructured tail, PknB activation is triggered by phosphorylation of its activation loop, which allows binding of the forkhead-associated domain of GarA. In the present work, we used molecular dynamics and quantum-mechanics/molecular mechanics simulations of the catalytically competent complex and kinase activity assays to understand PknG/PknB specificity and reactivity toward GarA. Two hydrophobic residues in GarA, Val24 and Phe25, seem essential for PknG binding and allow specificity for Thr21 phosphorylation. On the other hand, phosphorylated residues in PknB bind Arg26 in GarA and regulate its specificity for Thr22. We also provide a detailed analysis of the free energy profile for the phospho-transfer reaction and show why PknG has a constitutively active conformation not requiring priming phosphorylation in contrast to PknB. Our results provide new insights into these two key enzymes relevant for Mtb and the mechanisms of serine/threonine phosphorylation in bacteria.


Assuntos
Mycobacterium tuberculosis , Proteínas de Bactérias/química , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina , Treonina/metabolismo
4.
Bioinformatics ; 35(19): 3836-3838, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30825370

RESUMO

SUMMARY: The performance of docking calculations can be improved by tuning parameters for the system of interest, e.g. biasing the results towards the formation of relevant protein-ligand interactions, such as known ligand pharmacophore or interaction sites derived from cosolvent molecular dynamics. AutoDock Bias is a straightforward and easy to use script-based method that allows the introduction of different types of user-defined biases for fine-tuning AutoDock4 docking calculations. AVAILABILITY AND IMPLEMENTATION: AutoDock Bias is distributed with MGLTools (since version 1.5.7), and freely available on the web at http://ccsb.scripps.edu/mgltools/ or http://autodockbias.wordpress.com. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software , Viés , Sítios de Ligação , Ligantes
5.
J Chem Inf Model ; 60(2): 821-832, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31714778

RESUMO

Protein kinases (PKs) are allosteric enzymes that play an essential role in signal transduction by regulating a variety of key cellular processes. Most PKs suffer conformational rearrangements upon phosphorylation that strongly enhance the catalytic activity. Generally, it involves the movement of the phosphorylated loop toward the active site and the rotation of the whole C-terminal lobe. However, not all kinases undergo such a large configurational change: The MAPK extracellular signal-regulated protein kinases ERK1 and ERK2 achieve a 50 000 fold increase in kinase activity with only a small motion of the C-terminal region. In the present work, we used a combination of molecular simulation tools to characterize the conformational landscape of ERK2 in the active (phosphorylated) and inactive (unphosphorylated) states in solution in agreement with NMR experiments. We show that the chemical reaction barrier is strongly dependent on ATP conformation and that the "active" low-barrier configuration is subtly regulated by phosphorylation, which stabilizes a key salt bridge between the conserved Lys52 and Glu69 belonging to helix-C and promotes binding of a second Mg ion. Our study highlights that the on-off switch embedded in the kinase fold can be regulated by small, medium, and large conformational changes.


Assuntos
Proteína Quinase 1 Ativada por Mitógeno/química , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Sequência Conservada , Dissulfetos/química , Ativação Enzimática , Simulação de Dinâmica Molecular , Fosforilação , Conformação Proteica
6.
J Chem Inf Model ; 60(2): 833-842, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31923359

RESUMO

Histidine kinases (HK) of bacterial two-component systems represent a hallmark of allosterism in proteins, being able to detect a signal through the sensor domain and transmit this information through the protein matrix to the kinase domain which, once active, autophosphorylates a specific histidine residue. Inactive-to-active transition results in a large conformational change that moves the kinase on top of the histidine. In the present work, we use several molecular simulation techniques (Molecular Dynamics, Hybrid QM/MM, and constant pH molecular dynamics) to study the activation and autophosphorylation reactions in L. plantarum WalK, a cis-acting HK. In agreement with previous results, we show that the chemical step requires tight coupling with the conformational step in order to maintain the histidine phosphoacceptor in the correct tautomeric state, with a reactive δ-nitrogen. During the conformational transition, the kinase domain is never released and walks along the HK helix axis, breaking and forming several conserved residue-based contacts. The phosphate transfer reaction is concerted in the transition state region and is catalyzed through the stabilization of the negative developing charge of transferring phosphate along the reaction.


Assuntos
Histidina Quinase/química , Histidina Quinase/metabolismo , Simulação de Dinâmica Molecular , Teoria Quântica , Concentração de Íons de Hidrogênio , Lactobacillus plantarum/enzimologia , Fosforilação , Conformação Proteica , Termodinâmica
7.
Nucleic Acids Res ; 46(D1): D413-D418, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29106651

RESUMO

Available genomic data for pathogens has created new opportunities for drug discovery and development to fight them, including new resistant and multiresistant strains. In particular structural data must be integrated with both, gene information and experimental results. In this sense, there is a lack of an online resource that allows genome wide-based data consolidation from diverse sources together with thorough bioinformatic analysis that allows easy filtering and scoring for fast target selection for drug discovery. Here, we present Target-Pathogen database (http://target.sbg.qb.fcen.uba.ar/patho), designed and developed as an online resource that allows the integration and weighting of protein information such as: function, metabolic role, off-targeting, structural properties including druggability, essentiality and omic experiments, to facilitate the identification and prioritization of candidate drug targets in pathogens. We include in the database 10 genomes of some of the most relevant microorganisms for human health (Mycobacterium tuberculosis, Mycobacterium leprae, Klebsiella pneumoniae, Plasmodium vivax, Toxoplasma gondii, Leishmania major, Wolbachia bancrofti, Trypanosoma brucei, Shigella dysenteriae and Schistosoma Smanosoni) and show its applicability. New genomes can be uploaded upon request.


Assuntos
Anti-Infecciosos/química , Biologia Computacional/métodos , Bases de Dados Factuais , Genoma Bacteriano , Genoma Fúngico , Genoma Helmíntico , Genoma de Protozoário , Sequência de Aminoácidos , Anti-Infecciosos/farmacologia , Sítios de Ligação , Doenças Transmissíveis/tratamento farmacológico , Descoberta de Drogas , Humanos , Internet , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Modelos Moleculares , Terapia de Alvo Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Software
8.
J Chem Inf Model ; 59(8): 3572-3583, 2019 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-31373819

RESUMO

Virtual screening of large compound databases, looking for potential ligands of a target protein, is a major tool in computer-aided drug discovery. Throughout the years, different techniques such as similarity searching, pharmacophore matching, or molecular docking have been applied with the aim of finding hit compounds showing appreciable affinity. Molecular dynamics simulations in mixed solvents have been shown to identify hot spots relevant for protein-drug interaction, and implementations based on this knowledge were developed to improve pharmacophore matching of small molecules, binding free-energy estimations, and docking performance in terms of pose prediction. Here, we proved in a retrospective manner that cosolvent-derived pharmacophores from molecular dynamics (solvent sites) improve the performance of docking-based virtual screening campaigns. We applied a biased docking scheme based on solvent sites to nine relevant target proteins that have a set of known ligands or actives and compounds that are, presumably, nonbinders (decoys). Our results show improvement in virtual screening performance compared to traditional docking programs both at a global level, with up to 35% increase in areas under the receiver operating characteristic curve, and in early stages, with up to a 7-fold increase in enrichment factors at 1%. However, the improvement in pose prediction of actives was less profound. The presented application makes use of the AutoDock Bias method and is the only cosolvent-derived pharmacophore technique that employs its knowledge both in the ligand conformational search algorithm and the final affinity scoring for virtual screening purposes.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Simulação de Acoplamento Molecular , Proteínas/química , Proteínas/metabolismo , Solventes/química , Ligantes , Conformação Proteica , Interface Usuário-Computador
9.
Biochem Biophys Res Commun ; 498(2): 288-295, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28859976

RESUMO

Tuberculosis (TB) is a chronic disease caused by the bacillus Mycobacterium tuberculosis(Mtb) and remains a leading cause of mortality worldwide. The bacteria has an external wall which protects it from being killed, and the enzymes involved in the biosynthesis of the cell wall components have been proposed as promising targets for future drug development efforts. Cyclopropane Mycolic Acid Synthases (CMAS) constitute a group of ten homologous enzymes which belong to the mycolic acid biosynthesis pathway. These enzymes have S-adenosyl-l-methionine (SAM) dependent methyltransferase activity with a peculiarity, each one of them has strong substrate selectivity and reaction specificity, being able to produce among other things cyclopropanes or methyl-alcohol groups from the lipid olefin group. How each CMAS processes its substrate and how the specificity and selectivity are encoded in the protein sequence and structure, is still unclear. In this work, by using a combination of modeling tools, including comparative modeling, docking, all-atom MD and QM/MM methodologies we studied in detail the reaction mechanism of cmaA2, mmaA4, and mmaA1 CMAS and described the molecular determinants that lead to different products. We have modeled the protein-substrate complex structure and determined the free energy pathway for the reaction. The combination of modeling tools at different levels of complexity allows having a complete picture of the CMAS structure-activity relationship.


Assuntos
Proteínas de Bactérias/química , Metiltransferases/química , Oxigenases de Função Mista/química , Mycobacterium tuberculosis/enzimologia , Proteínas de Bactérias/metabolismo , Bicarbonatos/metabolismo , Domínio Catalítico , Ciclopropanos/química , Ciclopropanos/metabolismo , Metiltransferases/metabolismo , Oxigenases de Função Mista/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade
10.
Biochem Biophys Res Commun ; 498(2): 305-312, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28911864

RESUMO

Sensor histidine kinases (SHKs) are an integral component of the molecular machinery that permits bacteria to adapt to widely changing environmental conditions. CpxA, an extensively studied SHK, is a multidomain homodimeric protein with each subunit consisting of a periplasmic sensor domain, a transmembrane domain, a signal-transducing HAMP domain, a dimerization and histidine phospho-acceptor sub-domain (DHp) and a catalytic and ATP-binding subdomain (CA). The key activation event involves the rearrangement of the HAMP-DHp helical core and translation of the CA towards the acceptor histidine, which presumably results in an autokinase-competent complex. In the present work we integrate coarse-grained, all-atom, and hybrid QM-MM computer simulations to probe the large-scale conformational reorganization that takes place from the inactive to the autokinase-competent state (conformational step), and evaluate its relation to the autokinase reaction itself (chemical step). Our results highlight a tight coupling between conformational and chemical steps, underscoring the advantage of CA walking along the DHp core, to favor a reactive tautomeric state of the phospho-acceptor histidine. The results not only represent an example of multiscale modelling, but also show how protein dynamics can promote catalysis.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Simulação de Dinâmica Molecular , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Trifosfato de Adenosina/metabolismo , Histidina/metabolismo , Concentração de Íons de Hidrogênio , Fosforilação , Conformação Proteica , Domínios Proteicos
11.
Molecules ; 23(12)2018 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-30544890

RESUMO

Simulations of molecular dynamics (MD) are playing an increasingly important role in structure-based drug discovery (SBDD). Here we review the use of MD for proteins in aqueous solvation, organic/aqueous mixed solvents (MDmix) and with small ligands, to the classic SBDD problems: Binding mode and binding free energy predictions. The simulation of proteins in their condensed state reveals solvent structures and preferential interaction sites (hot spots) on the protein surface. The information provided by water and its cosolvents can be used very effectively to understand protein ligand recognition and to improve the predictive capability of well-established methods such as molecular docking. The application of MD simulations to the study of the association of proteins with drug-like compounds is currently only possible for specific cases, as it remains computationally very expensive and labor intensive. MDmix simulations on the other hand, can be used systematically to address some of the common tasks in SBDD. With the advent of new tools and faster computers we expect to see an increase in the application of mixed solvent MD simulations to a plethora of protein targets to identify new drug candidates.


Assuntos
Desenho de Fármacos , Simulação de Dinâmica Molecular , Proteínas/química , Solventes/química , Descoberta de Drogas , Ligantes , Proteínas/metabolismo
12.
Biochim Biophys Acta ; 1864(6): 655-666, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26969784

RESUMO

Hypoxanthine phosphoribosyl transferase from Trypanosoma cruzi (TcHPRT) is a critical enzyme for the survival of the parasite. This work demonstrates that the full-length form in solution adopts a stable and enzymatically active tetrameric form, exhibiting large inter-subunit surfaces. Although this protein irreversibly aggregates during unfolding, oligomerization is reversible and can be modulated by low concentrations of urea. When the C-terminal region, which is predicted as a disordered stretch, is excised by proteolysis, TcHPRT adopts a dimeric state, suggesting that the C-terminal region acts as a main guide for the quaternary arrangement. These results are in agreement with X-ray crystallographic data presented in this work. On the other hand, the C-terminal region exhibits a modulatory role on the enzyme, as attested by the enhanced activity observed for the dimeric form. Bisphosphonates act as substrate-mimetics, uncovering long-range communications among the active sites. All in all, this work contributes to establish new ways applicable to the design of novel inhibitors that could eventually result in new drugs against parasitic diseases.


Assuntos
Biopolímeros/metabolismo , Hipoxantina Fosforribosiltransferase/metabolismo , Trypanosoma cruzi/enzimologia , Sequência de Aminoácidos , Biopolímeros/química , Dicroísmo Circular , Hipoxantina Fosforribosiltransferase/química , Dados de Sequência Molecular , Proteólise , Espectrofotometria Ultravioleta
13.
J Chem Inf Model ; 57(4): 846-863, 2017 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-28318252

RESUMO

One of the most important biological processes at the molecular level is the formation of protein-ligand complexes. Therefore, determining their structure and underlying key interactions is of paramount relevance and has direct applications in drug development. Because of its low cost relative to its experimental sibling, molecular dynamics (MD) simulations in the presence of different solvent probes mimicking specific types of interactions have been increasingly used to analyze protein binding sites and reveal protein-ligand interaction hot spots. However, a systematic comparison of different probes and their real predictive power from a quantitative and thermodynamic point of view is still missing. In the present work, we have performed MD simulations of 18 different proteins in pure water as well as water mixtures of ethanol, acetamide, acetonitrile and methylammonium acetate, leading to a total of 5.4 µs simulation time. For each system, we determined the corresponding solvent sites, defined as space regions adjacent to the protein surface where the probability of finding a probe atom is higher than that in the bulk solvent. Finally, we compared the identified solvent sites with 121 different protein-ligand complexes and used them to perform molecular docking and ligand binding free energy estimates. Our results show that combining solely water and ethanol sites allows sampling over 70% of all possible protein-ligand interactions, especially those that coincide with ligand-based pharmacophoric points. Most important, we also show how the solvent sites can be used to significantly improve ligand docking in terms of both accuracy and precision, and that accurate predictions of ligand binding free energies, along with relative ranking of ligand affinity, can be performed.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas/química , Proteínas/metabolismo , Solventes/química , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Ligação Proteica , Conformação Proteica , Termodinâmica , Água/química
14.
PLoS Comput Biol ; 11(3): e1004051, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25741692

RESUMO

Cysteine residues have a rich chemistry and play a critical role in the catalytic activity of a plethora of enzymes. However, cysteines are susceptible to oxidation by Reactive Oxygen and Nitrogen Species, leading to a loss of their catalytic function. Therefore, cysteine oxidation is emerging as a relevant physiological regulatory mechanism. Formation of a cyclic sulfenyl amide residue at the active site of redox-regulated proteins has been proposed as a protection mechanism against irreversible oxidation as the sulfenyl amide intermediate has been identified in several proteins. However, how and why only some specific cysteine residues in particular proteins react to form this intermediate is still unknown. In the present work using in-silico based tools, we have identified a constrained conformation that accelerates sulfenyl amide formation. By means of combined MD and QM/MM calculation we show that this conformation positions the NH backbone towards the sulfenic acid and promotes the reaction to yield the sulfenyl amide intermediate, in one step with the concomitant release of a water molecule. Moreover, in a large subset of the proteins we found a conserved beta sheet-loop-helix motif, which is present across different protein folds, that is key for sulfenyl amide production as it promotes the previous formation of sulfenic acid. For catalytic activity, in several cases, proteins need the Cysteine to be in the cysteinate form, i.e. a low pKa Cys. We found that the conserved motif stabilizes the cysteinate by hydrogen bonding to several NH backbone moieties. As cysteinate is also more reactive toward ROS we propose that the sheet-loop-helix motif and the constraint conformation have been selected by evolution for proteins that need a reactive Cys protected from irreversible oxidation. Our results also highlight how fold conservation can be correlated to redox chemistry regulation of protein function.


Assuntos
Amidas/química , Cisteína/química , Proteínas/química , Proteínas/metabolismo , Ácidos Sulfênicos/química , Amidas/metabolismo , Biologia Computacional , Cisteína/metabolismo , Modelos Moleculares , Oxirredução , Conformação Proteica , Ácidos Sulfênicos/metabolismo
15.
Proteins ; 82(6): 1004-21, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24356896

RESUMO

Among 20 p450s of Mycobacterium tuberculosis (Mt), CYP121 has received an outstanding interest, not only due to its essentiality for bacterial viability but also because it catalyzes an unusual carbon-carbon coupling reaction. Based on the structure of the substrate bound enzyme, several reaction mechanisms were proposed involving first Tyr radical formation, second Tyr radical formation, and C-C coupling. Key and unknown features, being the nature of the species that generate the first and second radicals, and the role played by the protein scaffold each step. In the present work we have used classical and quantum based computer simulation methods to study in detail its reaction mechanism. Our results show that substrate binding promotes formation of the initial oxy complex, Compound I is the responsible for first Tyr radical formation, and that the second Tyr radical is formed subsequently, through a PCET reaction, promoted by the presence of key residue Arg386. The final C-C coupling reaction possibly occurs in bulk solution, thus yielding the product in one oxygen reduction cycle. Our results thus contribute to a better comprehension of MtCYP121 reaction mechanism, with direct implications for inhibitor design, and also contribute to our general understanding of these type of enzymes.


Assuntos
Proteínas de Bactérias/química , Sistema Enzimático do Citocromo P-450/química , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis/enzimologia , Dicetopiperazinas/química , Radicais Livres/química , Oxidantes/química , Oxirredução , Ligação Proteica , Teoria Quântica , Soluções , Termodinâmica , Tirosina/química
17.
Arch Insect Biochem Physiol ; 82(2): 96-115, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23238893

RESUMO

The short-chain dehydrogenases (SDR) constitute one of the oldest and largest families of enzymes with over 46,000 members in sequence databases. About 25% of all known dehydrogenases belong to the SDR family. SDR enzymes have critical roles in lipid, amino acid, carbohydrate, hormone, and xenobiotic metabolism as well as in redox sensor mechanisms. This family is present in archaea, bacteria, and eukaryota, emphasizing their versatility and fundamental importance for metabolic processes. We identified a cluster of eight SDRs in the mosquito Aedes aegypti (AaSDRs). Members of the cluster differ in tissue specificity and developmental expression. Heterologous expression produced recombinant proteins that had diverse substrate specificities, but distinct from the conventional insect alcohol (ethanol) dehydrogenases. They are all NADP⁺-dependent and they have S-enantioselectivity and preference for secondary alcohols with 8-15 carbons. Homology modeling was used to build the structure of AaSDR1 and two additional cluster members. The computational study helped explain the selectivity toward the (10S)-isomers as well as the reduced activity of AaSDR4 and AaSDR9 for longer isoprenoid substrates. Similar clusters of SDRs are present in other species of insects, suggesting similar selection mechanisms causing duplication and diversification of this family of enzymes.


Assuntos
Aedes/enzimologia , Proteínas de Insetos/metabolismo , Oxirredutases/metabolismo , Aedes/química , Sequência de Aminoácidos , Animais , Biologia Computacional , Regulação da Expressão Gênica , Proteínas de Insetos/química , Simulação de Acoplamento Molecular , Especificidade de Órgãos , Oxirredutases/química , Filogenia , Reação em Cadeia da Polimerase , RNA/metabolismo , Alinhamento de Sequência , Espectrofotometria , Especificidade por Substrato
18.
Biochim Biophys Acta Proteins Proteom ; 1870(2): 140745, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34906734

RESUMO

Bacteriophage endolysins are crucial for progeny release at the end of the lytic cycle. Mycobacteriophage's genomes carry a lysin A essential gene, whose product cleaves the peptidoglycan (PG) layer and a lysin B, coding for an esterase, that cleaves the linkage between the mycolic acids and the arabinogalactan-PG complex. Lysin A mycobacteriophage proteins are highly modular and in gp29 (LysA) of phage TM4 three distinctive domains were identified. By bioinformatics analysis the central module was previously found to be similar to an amidase-2 domain family with an N-acetylmuramoyl -L-alanine amidase activity. We demonstrated experimentally that purified LysA is able to lyse a suspension of Micrococcus lysodeikticus and can promote cell lysis when expressed in E. coli and Mycobacterium smegmatis. After incubation of LysA with MDP (Muramyl dipeptide, N-acetyl-muramyl-L-alanyl-D-isoglutamine) we detected the presence of N-acetylmuramic acid (NAcMur) and L-Ala- D- isoGlutamine (L-Ala-D-isoGln) corroborating the proposed muramidase activity of this enzyme. This protein was stabilized at acidic pH in the presence of Zn consistent with the increase of the enzymatic activity under these conditions. By homology modeling, we predicted that the Zn ion is coordinated by His 226, His 335, and Asp 347 and we also identified the amino acid Glu 290 as the catalytic residue. LysA activity was completely abolished in derived mutants on these key residues, suggesting that the PG hydrolysis solely relies on the central domain of the protein.


Assuntos
Endopeptidases/metabolismo , Micobacteriófagos/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Peptidoglicano/metabolismo , Proteínas Virais/metabolismo , Biologia Computacional/métodos , Endopeptidases/química , Escherichia coli/metabolismo , Galactanos , Hidrólise , Espectrometria de Massas/métodos , Micrococcus/metabolismo , Ácidos Murâmicos/metabolismo , Mycobacterium smegmatis/metabolismo , Proteínas Virais/química
19.
J Med Chem ; 65(14): 9691-9705, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35737472

RESUMO

Computer-aided drug discovery methods play a major role in the development of therapeutically important small molecules, but their performance needs to be improved. Molecular dynamics simulations in mixed solvents are useful in understanding protein-ligand recognition and improving molecular docking predictions. In this work, we used ethanol as a cosolvent to find relevant interactions for ligands toward protein kinase G, an essential protein of Mycobacterium tuberculosis (Mtb). We validated the hot spots by screening a database of fragment-like compounds and another one of known kinase inhibitors. Next, we performed a pharmacophore-guided docking simulation and found three low micromolar inhibitors, including one with a novel chemical scaffold that we expanded to four derivative compounds. Binding affinities were characterized by intrinsic fluorescence quenching assays, isothermal titration calorimetry, and the analysis of melting curves. The predicted binding mode was confirmed by X-ray crystallography. Finally, the compounds significantly inhibited the viability of Mtb in infected THP-1 macrophages.


Assuntos
Mycobacterium tuberculosis , Sítios de Ligação , Proteínas Quinases Dependentes de GMP Cíclico , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia
20.
Acta Crystallogr D Struct Biol ; 77(Pt 10): 1241-1250, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34605428

RESUMO

All biological processes rely on the formation of protein-ligand, protein-peptide and protein-protein complexes. Studying the affinity, kinetics and thermodynamics of binding between these pairs is critical for understanding basic cellular mechanisms. Many different technologies have been designed for probing interactions between biomolecules, each based on measuring different signals (fluorescence, heat, thermophoresis, scattering and interference, among others). Evaluation of the data from binding experiments and their fitting is an essential step towards the quantification of binding affinities. Here, user-friendly online tools to analyze biophysical data from steady-state fluorescence spectroscopy, microscale thermophoresis and differential scanning fluorimetry experiments are presented. The modules of the data-analysis platform (https://spc.embl-hamburg.de/) contain classical thermodynamic models and clear user guidelines for the determination of equilibrium dissociation constants (Kd) and thermal unfolding parameters such as melting temperatures (Tm).


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/química , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Fluorescência , Mycobacterium tuberculosis/metabolismo , Sistemas On-Line , Temperatura , Termodinâmica , Cinética , Ligantes , Ligação Proteica , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA