RESUMO
We present an advancement in applications of ultrafast optics in picosecond laser ultrasonics - laser-induced comb-like coherent acoustic phonons are optically controlled in a In0.27Ga0.73As/GaAs multiple quantum well (MQW) structure by a high-speed asynchronous optical sampling (ASOPS) system based on two GHz Yb:KYW lasers. Two successive pulses from the same pump laser are used to excite the MQW structure. The second pump light pulse has a tunable time delay with respect to the first one and can be also tuned in intensity, which enables the amplitude and phase modulation of acoustic phonons. This yields rich temporal acoustic patterns with suppressed or enhanced amplitudes, various wave-packet shapes, varied wave-packet widths, reduced wave-packet periods and varied phase shifts of single-period oscillations within a wave-packet. In the frequency domain, the amplitude and phase shift of the individual comb component present a second-pump-delay-dependent cosine-wave-like and sawtooth-wave-like variation, respectively, with a modulation frequency equal to the comb component frequency itself. The variations of the individual component amplitude and phase shift by tuning the second pump intensity exhibit an amplitude valley and an abrupt phase jump at the ratio around 1:1 of the two pump pulse intensities for certain time delays. A simplified model, where both generation and detection functions are assumed as a cosine stress wave enveloped by Gaussian or rectangular shapes in an infinite periodic MQW structure, is developed in order to interpret acoustic manipulation in the MQW sample. The modelling agrees well with the experiment in a wide range of time delays and intensity ratios. Moreover, by applying a heuristic-analytical approach and nonlinear corrections, the improved calculations reach an excellent agreement with experimental results and thus enable to predict and synthesize coherent acoustic wave patterns in MQW structures.
RESUMO
A low-cost scheme of high-speed asynchronous optical sampling based on Yb:KYW oscillators is reported. Two GHz diode-pumped oscillators with a slight pulse repetition rate offset serve as pump and probe source, respectively. The temporal resolution of this system is limited to 500 fs mainly by the pulse duration of the oscillators and also by relative timing jitter between the oscillators. A near-shot-noise noise floor around 10-6 (∆R/R) is obtained within a data acquisition time of a few seconds. The performance of the system is demonstrated by measurements of coherent acoustic phonons in a semiconductor sample that resembles a semiconductor saturable absorber mirror or an optically pumped semiconductor chip.
RESUMO
Mode-locking of a directly diode-pumped Tm:LuAG laser is demonstrated using GaSb-based semiconductor saturable absorber mirrors (SESAMs). Stable and self-starting mode-locked operation was realized, generating pulses as short as 13.6 ps at 2024 nm with a maximum output power of 98 mW. Two GaInAs-based SESAMs were used for comparison with the operation based upon the use of the GaSb SESAM; in this case, longer pulses with durations of 27 ps and 34 ps were obtained under the same experimental conditions. Our work sets a new record in pulse duration for mode-locked Tm:LuAG lasers and confirms that lattice-matched GaSb-based SESAMs are beneficial for mode-locked solid-state lasers in the 2 µm range.
RESUMO
We present a high-speed asynchronous optical sampling system, based on two different Kerr-lens mode-locked lasers with a GHz repetition rate: An Yb:KYW oscillator and a Ti:sapphire oscillator are synchronized in a master-slave configuration at a repetition rate offset of a few kHz. This system enables two-colour pump-probe measurements with resulting noise floors below 10â»6 at a data aquisition time of 5 seconds. The measured temporal resolution within the 1 ns time window is below 350 fs, including a timing jitter of less than 50 fs. The system is applied to investigate zone-folded coherent acoustic phonons in two different semiconductor superlattices in transmission geometry at a probe wavelength far below the bandgap of the superlattice constituents. The lifetime of the phonon modes with a zero wave vector and frequencies in the range from 100 GHz to 500 GHz are measured at room temperature and compared with previous work.
RESUMO
We present a fiber-coupled pump-probe system with a sub-50 fs time resolution and a nanosecond time window, based on high-speed asynchronous optical sampling. By use of a transmission grism pulse compressor, we achieve pump pulses with a pulse duration of 42 fs, an average power of 300 mW and a peak power exceeding 5 kW at a pulse repetition rate of 1 GHz after 6 m of optical fiber. With this system we demonstrate thickness mapping of soft X-ray mirrors at a sub-nm thickness resolution on a cm(2) scan area. In addition, terahertz field generation with resolved spectral components of up to 3.5 THz at a GHz frequency resolution is demonstrated.
RESUMO
A watt-level output passively mode-locked Tm:LuAG bulk laser with an InGaAs semiconductor saturable absorber mirror (SESAM) is demonstrated for the first time. A maximum average output power of 1.21 W at 2022.9 nm has been achieved with a pulse duration of 38 ps and a repetition rate of 129.2 MHz. The results indicate the potential of Tm:LuAG crystals as candidate for realizing high power ultrafast lasers at 2 µm.
RESUMO
The origin of the martensitic transition in the magnetic shape memory alloy Ni-Mn-Ga has been widely discussed. While several studies suggest it is electronically driven, the adaptive martensite model reproduced the peculiar nonharmonic lattice modulation. We used femtosecond spectroscopy to probe the temperature and doping dependence of collective modes, and scanning tunneling microscopy revealed the corresponding static modulations. We show that the martensitic phase can be described by a complex charge-density wave tuned by magnetic ordering and strong electron-lattice coupling.
RESUMO
We study the comparability of the two most important measurement methods used for the characterization of semiconductor saturable absorber mirrors (SESAMs). For both methods, single-pulse spectroscopy (SPS) and pump-probe spectroscopy (PPS), we analyze in detail the time-dependent saturation dynamics inside a SESAM. Based on this analysis, we find that fluence-dependent PPS at complete spatial overlap and zero time delay is equivalent to SPS. We confirm our findings experimentally by comparing data from SPS and PPS of two samples. We show how to interpret this data consistently and we give explanations for possible deviations.
Assuntos
Lentes , Semicondutores , Análise Espectral/instrumentação , Análise Espectral/métodos , Desenho de Equipamento , Análise de Falha de EquipamentoRESUMO
A passively mode-locked Tm,Ho:YAP laser around 2.1 µm wavelength employing a semiconductor saturable absorber mirror is demonstrated. Stable continuous wave mode-locking operation was achieved at variable center wavelengths of 2036.5 nm, 2064.5 nm, 2095.5 nm, 2103.5 nm, and 2130 nm, respectively. Pulses as short as 40.4 ps were obtained at 2064.5 nm with a spectral FWHM of 0.5 nm at output powers of 132 mW and a repetition rate around 107 MHz. A maximum output power of 238 mW was obtained at 2130 nm with a pulse duration of 66 ps.
Assuntos
Lasers Semicondutores , Lentes , Transferência de Energia , Desenho de Equipamento , Análise de Falha de Equipamento , RetroalimentaçãoRESUMO
We study the relaxation of coherent acoustic phonon modes with frequencies up to 500 GHz in ultrathin free-standing silicon membranes. Using an ultrafast pump-probe technique of asynchronous optical sampling, we observe that the decay time of the first-order dilatational mode decreases significantly from ~4.7 ns to 5 ps with decreasing membrane thickness from ~194 to 8 nm. The experimental results are compared with theories considering both intrinsic phonon-phonon interactions and extrinsic surface roughness scattering including a wavelength-dependent specularity. Our results provide insight to understand some of the limits of nanomechanical resonators and thermal transport in nanostructures.
Assuntos
Acústica , Membranas Artificiais , Modelos Teóricos , Nanoestruturas/química , Fônons , Silício/químicaRESUMO
Longitudinal acoustic modes in planar thin gold films are excited and detected by a combination of ultrafast pump-probe photoacoustic spectroscopy and a surface plasmon resonance (SPR) technique. The resulting high sensitivity allows the detection of acoustic modes up to the 7th harmonic (258 GHz) with sub-pm amplitude sensing capabilities. This makes a comparison of damping times of individual modes possible. Further, the dynamics of the real and imaginary part of the dielectric function and the film's thickness variation are separated by using the dependence of the amplitudes of the acoustic modes on the detection angle and the surface plasmon resonance. We find that longitudinal acoustic modes in the gold films mainly affect the real part of the dielectric function and highlight the importance to consider thickness related effects in acousto-plasmonic sensing.
RESUMO
A compact high-resolution THz time-domain waveguide spectrometer that is operated inside a cryostat is demonstrated. A THz photo-Dember emitter and a ZnTe electro-optic detection crystal are directly attached to a parallel copper-plate waveguide. This allows the THz beam to be excited and detected entirely inside the cryostat, obviating the need for THz-transparent windows or external THz mirrors. Since no external bias for the emitter is required, no electric feed-through into the cryostat is necessary. Using asynchronous optical sampling, high resolution THz spectra are obtained in the frequency range from 0.2 to 2.0 THz. The THz emission from the photo-Dember emitter and the absorption spectrum of 1,2-dicyanobenzene film are measured as a function of temperature. An absorption peak around 750 GHz of 1,2-dicyanobenzene displays a blue shift with increasing temperature.
Assuntos
Fotometria/instrumentação , Refratometria/instrumentação , Espectroscopia Terahertz/instrumentação , Transdutores , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , TemperaturaRESUMO
An efficient continuous wave and passively mode-locked thulium-doped oxyorthosilicate Tm:LuYSiO5 laser is demonstrated. A maximum slope efficiency of 56.3% is obtained at 2057.4 nm in continuous wave operation regime. With an InGaAs quantum well SESAM, self-starting passively mode-locked Tm:LuYSiO5 laser is realized in the 1929 nm to 2065 nm spectral region. A maximum average output power of 130.2 mW with a pulse duration of 33.1 ps and a repetition rate of about 100 MHz is generated at 1984.1 nm. Pulses as short as 24.2 ps with an average output power of 100 mW are obtained with silicon prisms where used to manage the intracavity dispersion. The shortest pulse duration of about 19.6 ps is obtained with an average output power of 64.5 mW at 1944.3 nm.
Assuntos
Lasers , Reconhecimento Automatizado de Padrão/métodos , Túlio/química , Desenho de Equipamento , Análise de Falha de EquipamentoRESUMO
The possibility to measure the glass transition temperature in poly(methyl methacrylate) (PMMA) films by picosecond ultrasonics with thicknesses ranging from 458 nm to 32 nm is demonstrated. A shift of the longitudinal acoustic eigenmodes towards lower frequencies with temperature is observed accompanied by a change in the temperature-frequency slopes at the glass transition temperature. The contributions to the frequency shift from changes in film thickness and sound velocity are discussed and the latter is extracted below the glass transition temperature. Finally, the advantages and disadvantages of the current approach in a comparison to other methods based on acoustic measurements in the GHz regime are reviewed.
RESUMO
The Tm,Ho:YAlO3 laser performance for two crystal orientations pumped by a wavelength tunable Ti:Sapphire laser is presented in this paper. An experimental investigation comparing a- and b-oriented Tm,Ho:YAlO3 crystals laser performance is demonstrated and discussed. Single- and multi-wavelength operations of Tm,Ho:YAlO3 lasers have been investigated in detail. The maximum output powers of 890 mW at 2119 nm for a-oriented Tm,Ho:YAlO3 crystal and 946 mW at 2103 nm for b-oriented Tm,Ho:YAlO3 crystal have been obtained, respectively. The two crystals show very similar performance in terms of output power and conversion efficiency, only that the b-cut Tm,Ho:YAP crystal demonstrates more regimes of multi-wavelength operations.
Assuntos
Lasers , Desenho de Equipamento , Análise de Falha de Equipamento , TemperaturaRESUMO
We propose subharmonic resonant optical excitation with femtosecond lasers as a new method for the characterization of phononic and nanomechanical systems in the gigahertz to terahertz frequency range. This method is applied for the investigation of confined acoustic modes in a free-standing semiconductor membrane. By tuning the repetition rate of a femtosecond laser through a subharmonic of a mechanical resonance we amplify the mechanical amplitude, directly measure the linewidth with megahertz resolution, infer the lifetime of the coherently excited vibrational states, accurately determine the system's quality factor, and determine the amplitude of the mechanical motion with femtometer resolution.
RESUMO
We report an ultrafast time-domain spectroscopy system based on high-speed asynchronous optical sampling operating without mechanical scanner. The system uses two 1 GHz femtosecond oscillators that are offset-stabilized using high-bandwidth feedback electronics operating at the tenth repetition rate harmonics. Definition of the offset frequency, i.e. the time-delay scan rate, in the range of a few kilohertz is accomplished using direct-digital-synthesis electronics for the first time. The time-resolution of the system over the full available 1 ns time-delay window is determined by the laser pulse duration and is 45 fs. This represents a three-fold improvement compared to previous approaches where timing jitter was the limiting factor. Two showcase experiments are presented to verify the high time-resolution and sensitivity of the system.
Assuntos
Eletrônica/instrumentação , Lasers , Oscilometria/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Análise Espectral/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , RetroalimentaçãoRESUMO
We report on the generation of impulsive terahertz (THz) radiation with 36 kV/cm vacuum electric field (1.5 mW average thermal power) at 250 kHz repetition rate and a high NIR-to-THz conversion efficiency of 2 x 10(-3). This is achieved by photoexciting biased large-area photoconductive emitter with NIR fs pulses of microJ pulse energy. We demonstrate focussing of the THz beam by tailoring the pulse front of the exciting laser beam without any focussing element for the THz beam. A high dynamic range of 10(4) signal-to-noise is obtained with an amplifier based system.
RESUMO
The photo-Dember effect is a source of impulsive THz emission following femtosecond pulsed optical excitation. This emission results from the ultrafast spatial separation of electron-hole pairs in strong carrier gradients due to their different diffusion coefficients. The associated time dependent polarization is oriented perpendicular to the excited surface which is inaptly for efficient out coupling of THz radiation. We propose a scheme for generating strong carrier gradients parallel to the excited surface. The resulting photo-Dember currents are oriented in the same direction and emit THz radiation into the favorable direction perpendicular to the surface. This effect is demonstrated for GaAs and In(0.53)Ga(0.47)As. Surprisingly the photo-Dember THz emitters provide higher bandwidth than photoconductive emitters. Multiplexing of phase coherent photo-Dember currents by periodically tailoring the photoexcited spatial carrier distribution gives rise to a strongly enhanced THz emission, which reaches electric field amplitudes comparable to a high-efficiency externally biased photoconductive emitter.
RESUMO
We report a terahertz time-domain spectrometer with more than 6 THz spectral coverage and 1 GHz resolution based on high-speed asynchronous optical sampling. It operates at 2 kHz scan rate without mechanical delay stage. The frequency error of the system at 60 s acquisition time is determined by comparing a measured water vapor absorption spectrum to data reported in the HITRAN database. The mean error of 87 evaluated absorption lines is 142 MHz.