Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Soft Matter ; 16(28): 6539-6548, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32602511

RESUMO

We report on the transient frictional response of contacts between a rigid spherical glass probe and a micrometer-thick poly(dimethylacrylamide) hydrogel film grafted onto a glass substrate when a lateral relative motion is applied to the contact initially at rest. From dedicated experiments with in situ contact visualization, both the friction force and the contact size are observed to vary well beyond the occurrence of a full sliding condition at the contact interface. Depending on the imposed velocity and on the static contact time before the motion is initiated, either an overshoot or an undershoot in the friction force is observed. These observations are rationalized by considering that the transient is predominantly driven by the flow of water within the stressed hydrogel networks. From the development of a poroelastic contact model using a thin film approximation, we provide a theoretical description of the main features of the transient. We especially justify the experimental observation that the relaxation of friction force Ft(t) toward steady state is uniquely dictated by the time-dependence of the contact radius a(t), independently on the sliding velocity and on the applied normal load.

2.
Langmuir ; 34(50): 15238-15244, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30452277

RESUMO

Hydrogel coatings absorb water vapor, or other solvents, and, as such, are good candidates for antifog applications. In the present study, the transfer of vapor from the atmosphere to hydrogel thin films is measured in a situation where water vapor flows alongside the coating which is set to a temperature lower than the ambient temperature. The effect of the physico-chemistry of the hydrogel film on the swelling kinetics is particularly investigated. By using model thin films of surface-grafted polymer networks with controlled thickness, varied cross-links density, and varied affinity for water, we were able to determine the effect of the film hygroscopy on the dynamics of swelling of the film. These experimental results are accounted for by a diffusion-advection model that is supplemented with a boundary condition at the hydrogel surface: we show that the latter can be determined from the equilibrium sorption isotherms of the polymer films. Altogether, this paper offers a predictive tool for the swelling kinetics of any hydrophilic hydrogel thin film.

3.
Langmuir ; 34(33): 9617-9626, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30028620

RESUMO

We report on the frictional behavior of thin poly(dimethylacrylamide) hydrogel films grafted on glass substrates in sliding contact with a glass spherical probe. Friction experiments are carried out at various velocities and normal loads applied with the contact fully immersed in water. In addition to friction force measurements, a novel optical setup is designed to image the shape of the contact under steady-state sliding. The velocity dependence of both friction force Ft and contact shape is found to be controlled by a Péclet number, Pe, defined as the ratio of the time τ needed to drain the water out of the contact region to a contact time a/ v, where v is the sliding velocity and a is the contact radius. When Pe < 1, the equilibrium circular contact achieved under static normal indentation remains unchanged during sliding. Conversely, for Pe > 1, a decrease in the contact area is observed together with the development of a contact asymmetry when the sliding velocity is increased. A maximum in Ft is also observed at Pe ≈1. These experimental observations are discussed in the light of a poroelastic contact model based on a thin-film approximation. This model indicates that the observed changes in contact geometry are due to the development of a pore pressure imbalance when Pe > 1. An order-of-magnitude estimate of the friction force and its dependence on normal load and velocity are also provided under the assumption that most of the frictional energy is dissipated by poroelastic flow at the leading and trailing edges of the sliding contact.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA