Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38255772

RESUMO

Parkinson's disease (PD) is a complex disorder characterized by the impairment of the dopaminergic nigrostriatal system. PD has duplicated its global burden in the last few years, becoming the leading neurological disability worldwide. Therefore, there is an urgent need to develop innovative approaches that target multifactorial underlying causes to potentially prevent or limit disease progression. Accumulating evidence suggests that neuroinflammatory responses may play a pivotal role in the neurodegenerative processes that occur during the development of PD. Cortistatin is a neuropeptide that has shown potent anti-inflammatory and immunoregulatory effects in preclinical models of autoimmune and neuroinflammatory disorders. The goal of this study was to explore the therapeutic potential of cortistatin in a well-established preclinical mouse model of PD induced by acute exposure to the neurotoxin 1-methil-4-phenyl1-1,2,3,6-tetrahydropyridine (MPTP). We observed that treatment with cortistatin mitigated the MPTP-induced loss of dopaminergic neurons in the substantia nigra and their connections to the striatum. Consequently, cortistatin administration improved the locomotor activity of animals intoxicated with MPTP. In addition, cortistatin diminished the presence and activation of glial cells in the affected brain regions of MPTP-treated mice, reduced the production of immune mediators, and promoted the expression of neurotrophic factors in the striatum. In an in vitro model of PD, treatment with cortistatin also demonstrated a reduction in the cell death of dopaminergic neurons that were exposed to the neurotoxin. Taken together, these findings suggest that cortistatin could emerge as a promising new therapeutic agent that combines anti-inflammatory and neuroprotective properties to regulate the progression of PD at multiple levels.


Assuntos
Neuropeptídeos , Doença de Parkinson , Animais , Camundongos , Doença de Parkinson/tratamento farmacológico , Neurotoxinas , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
2.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37762420

RESUMO

Neurodegenerative disorders encompass a broad spectrum of profoundly disabling situations that impact millions of individuals globally. While their underlying causes and pathophysiology display considerable diversity and remain incompletely understood, a mounting body of evidence indicates that the disruption of blood-brain barrier (BBB) permeability, resulting in brain damage and neuroinflammation, is a common feature among them. Consequently, targeting the BBB has emerged as an innovative therapeutic strategy for addressing neurological disorders. Within this review, we not only explore the neuroprotective, neurotrophic, and immunomodulatory benefits of mesenchymal stem cells (MSCs) in combating neurodegeneration but also delve into their recent role in modulating the BBB. We will investigate the cellular and molecular mechanisms through which MSC treatment impacts primary age-related neurological conditions like Alzheimer's disease, Parkinson's disease, and stroke, as well as immune-mediated diseases such as multiple sclerosis. Our focus will center on how MSCs participate in the modulation of cell transporters, matrix remodeling, stabilization of cell-junction components, and restoration of BBB network integrity in these pathological contexts.


Assuntos
Doença de Alzheimer , Células-Tronco Mesenquimais , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Barreira Hematoencefálica/patologia , Doenças Neurodegenerativas/patologia , Doença de Parkinson/patologia , Doença de Alzheimer/patologia , Células-Tronco Mesenquimais/fisiologia
3.
Neuroendocrinology ; 112(8): 784-795, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34649259

RESUMO

INTRODUCTION: Scleroderma, or systemic sclerosis, is a complex connective tissue disorder characterized by autoimmunity, vasculopathy, and progressive fibrosis of the skin and internal organs. Because its aetiology is unknown, the identification of genes/factors involved in disease severity, differential clinical forms, and associated complications is critical for understanding its pathogenesis and designing novel treatments. Neuroendocrine mediators in the skin emerge as potential candidates. We investigated the role played by the neuropeptide cortistatin in a preclinical model of scleroderma. METHODS: Dermal fibrosis was induced by repetitive intradermal injections of bleomycin in wild-type and cortistatin-deficient mice. The histopathological signs and expression of fibrotic markers were evaluated in the skin and lungs. RESULTS: An inverse correlation between cortistatin levels and fibrogenic activation exists in the damaged skin and dermal fibroblasts. Bleomycin-challenged skin lesions of mice that are partially and totally deficient in cortistatin showed exacerbated histopathological signs of scleroderma, characterized by thicker and more fibrotic dermal layer, enlarged epidermis, and increased inflammatory infiltration in comparison to those of wild-type mice. Cortistatin deficiency enhanced dermal collagen deposits, connective tissue growth factor expression, loss of microvessels, and predisposition to suffer severe complications that co-occur with dermal exposition to bleomycin, including pulmonary fibrotic disease and increased mortality. Treatment with cortistatin mitigated these pathological processes. DISCUSSION/CONCLUSION: We identify cortistatin as an endogenous break of skin inflammation and fibrosis. Deficiency in cortistatin could be a marker of poor prognosis of scleroderma and associated complications. Cortistatin-based therapies emerge as attractive candidates to treat severe forms of systemic sclerosis and to manage fibrosis-related side effects of bleomycin chemotherapy in oncologic patients.


Assuntos
Neuropeptídeos , Fibrose Pulmonar , Escleroderma Sistêmico , Animais , Bleomicina/toxicidade , Modelos Animais de Doenças , Fibrose , Camundongos , Neuropeptídeos/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Escleroderma Sistêmico/induzido quimicamente , Escleroderma Sistêmico/metabolismo
4.
J Immunol ; 200(11): 3697-3710, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29669783

RESUMO

Vasoactive intestinal peptide (VIP) is a neuropeptide that exerts various vascular and cardioprotective functions and regulates immune function and inflammatory response at multiple levels. However, its role in inflammatory cardiovascular disorders is largely unknown. Myocarditis and atherosclerosis are two inflammatory and autoimmune cardiovascular diseases that cause important adverse circulatory events. In this study, we investigate the therapeutic effects of VIP in various well-established preclinical models of experimental autoimmune myocarditis and atherosclerosis. Intraperitoneal injection of VIP during the effector phase of experimental autoimmune myocarditis in susceptible BALB/c mice significantly reduced its prevalence, ameliorated signs of heart hypertrophy and injury, attenuated myocardial inflammatory infiltration, and avoided subsequent profibrotic cardiac remodeling. This effect was accompanied by a reduction of Th17-driven cardiomyogenic responses in peripheral lymphoid organs and in the levels of myocardial autoantibodies. In contrast, acute and chronic atherosclerosis was induced in apolipoprotein E-deficient mice fed a hyperlipidemic diet and subjected to partial carotid ligation. Systemic VIP treatment reduced the number and size of atherosclerotic plaques in carotid, aorta, and sinus in hypercholesterolemic mice. VIP reduced Th1-driven inflammatory responses and increased regulatory T cells in atherosclerotic arteries and their draining lymph nodes. VIP also regulated cholesterol efflux in macrophages and reduced the formation of foam cells and their presence in atherosclerotic plaques. Finally, VIP inhibited proliferation and migration of smooth muscle cells and neointima formation in a mouse model of complete carotid ligation. These findings encourage further studies aimed to assess whether VIP can be used as a pharmaceutical agent to treat heart inflammation and atherosclerosis.


Assuntos
Aterosclerose/imunologia , Doenças Autoimunes/imunologia , Autoimunidade/imunologia , Inflamação/imunologia , Miocardite/imunologia , Peptídeo Intestinal Vasoativo/imunologia , Animais , Apolipoproteínas E/imunologia , Autoanticorpos/imunologia , Modelos Animais de Doenças , Feminino , Linfonodos/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Músculo Liso/imunologia , Miocárdio/imunologia , Neuropeptídeos/imunologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia
5.
Rev Chil Pediatr ; 91(1): 94-98, 2020 Feb.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-32730418

RESUMO

INTRODUCTION: Panniculitis is a group of diseases that affect subcutaneous fat tissue and clinically manifest as nodules. Its pathogenesis is not entirely clear, and it is usually asymptomatic. The confirma tory diagnosis is histological. OBJECTIVE: To describe the clinical and histopathological characteristics of a case of fat necrosis, a specific form of panniculitis in the newborn (NB). CLINICAL CASE: 40-week female NB, born by emergency cesarean section due to fetal tachycardia with meconium, Apgar score 7-8-9. She required oxygen and positive pressure for five minutes. On the fifth day of life, she presen ted an increased volume in the posterior trunk region, with an erythematous - purplish discoloration, which is soft and non-tender to palpation. Skin and soft tissues ultrasound showed increased echo genicity of the subcutaneous cellular tissue and loss of definition of the adipocytes of 42.3 x 9.7 x 20.1 mm approximately, without vascularization. Skin biopsy showed epidermis with irregular acanthosis and basket-weave orthokeratosis; papillary dermis with inflammatory infiltrate, and reticular dermis and adipose tissue with presence of lymphohistiocytic infiltrate with a tendency to form nodules, without vascular involvement, and small cholesterol deposits, compatible with subcutaneous fat ne crosis (SBFN) of the newborn. The patient at three months of age had complete regression of the lesion. CONCLUSIONS: a clinically and histologically compatible case with SBFN is described, that did not present complications during observation. In general, this pathology has a good prognosis, with spontaneous resolution as in our case.


Assuntos
Necrose Gordurosa/diagnóstico , Paniculite/diagnóstico , Necrose Gordurosa/patologia , Feminino , Humanos , Recém-Nascido , Paniculite/patologia , Remissão Espontânea
6.
J Neuroinflammation ; 16(1): 31, 2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755253

RESUMO

In the version of this article that was originally published [1]; some information in the "Author's contributions" section was omitted.

7.
EMBO J ; 33(10): 1117-33, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24596247

RESUMO

Macrophages contribute to tissue homeostasis and influence inflammatory responses by modulating their phenotype in response to the local environment. Understanding the molecular mechanisms governing this plasticity would open new avenues for the treatment for inflammatory disorders. We show that deletion of calcineurin (CN) or its inhibition with LxVP peptide in macrophages induces an anti-inflammatory population that confers resistance to arthritis and contact hypersensitivity. Transfer of CN-targeted macrophages or direct injection of LxVP-encoding lentivirus has anti-inflammatory effects in these models. Specific CN targeting in macrophages induces p38 MAPK activity by downregulating MKP-1 expression. However, pharmacological CN inhibition with cyclosporin A (CsA) or FK506 did not reproduce these effects and failed to induce p38 activity. The CN-inhibitory peptide VIVIT also failed to reproduce the effects of LxVP. p38 inhibition prevented the anti-inflammatory phenotype of CN-targeted macrophages, and mice with defective p38-activation were resistant to the anti-inflammatory effect of LxVP. Our results identify a key role for CN and p38 in the modulation of macrophage phenotype and suggest an alternative treatment for inflammation based on redirecting macrophages toward an anti-inflammatory status.


Assuntos
Calcineurina/metabolismo , Fosfatase 1 de Especificidade Dupla/metabolismo , Macrófagos/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Calcineurina/genética , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Fosfatase 1 de Especificidade Dupla/genética , Citometria de Fluxo , Humanos , Immunoblotting , Imuno-Histoquímica , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Osteoclastos/citologia , Osteoclastos/metabolismo , Fagocitose/genética , Fagocitose/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Quinases p38 Ativadas por Mitógeno/genética
8.
J Neuroinflammation ; 15(1): 343, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30553270

RESUMO

BACKGROUND: Over-activated microglia play a central role during neuroinflammation, leading to neuronal cell death and neurodegeneration. Reversion of over-activated to neuroprotective microglia phenotype could regenerate a healthy CNS-supporting microglia environment. Our aim was to identify a dataset of intracellular molecules in primary microglia that play a role in the transition of microglia to a ramified, neuroprotective phenotype. METHODS: We exploited the anti-inflammatory and neuroprotective properties of conditioned medium of adipose-derived mesenchymal stem cells (CM) as a tool to generate the neuroprotective phenotype of microglia in vitro, and we set up a microscopy-based siRNA screen to identify its hits by cell morphology. RESULTS: We initially assayed an array of 157 siRNAs against genes that codify proteins and factors of cytoskeleton and activation/inflammatory pathways in microglia. From them, 45 siRNAs significantly inhibited the CM-induced transition from a neurotoxic to a neuroprotective phenotype of microglia, and 50 siRNAs had the opposite effect. As a proof-of-concept, ten of these targets were validated with individual siRNAs and by downregulation of protein expression. This validation step resulted essential, because three of the potential targets were false positives. The seven validated targets were assayed in a functional screen that revealed that the atypical RhoGTPase RhoE/Rnd3 is necessary for BDNF expression and plays an essential role in controlling microglial migration. CONCLUSIONS: Besides the identification of RhoE/Rnd3 as a novel inducer of a potential neuroprotective phenotype in microglia, we propose a list of potential targets to be further confirmed with selective activators or inhibitors.


Assuntos
Citocinas/metabolismo , Microglia/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Animais Recém-Nascidos , Encéfalo/citologia , Movimento Celular/fisiologia , Forma Celular/genética , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Citocinas/genética , Feminino , Regulação da Expressão Gênica/genética , Células-Tronco Mesenquimais/química , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Transfecção , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/genética
9.
Nat Rev Immunol ; 7(1): 52-63, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17186031

RESUMO

The induction of antigen-specific tolerance is essential to maintain immune homeostasis, control autoreactive T cells, prevent the onset of autoimmune diseases and achieve tolerance of transplants. Inflammation is a necessary process for eliminating pathogens, but can lead to serious deleterious effects in the host if left unchecked. Identifying the endogenous factors that control immune tolerance and inflammation is a key goal in the field of immunology. In the last decade, various neuropeptides that are produced by immune cells with potent anti-inflammatory actions were found to participate in the maintenance of tolerance in different immunological disorders.


Assuntos
Autoimunidade , Tolerância Imunológica , Inflamação/imunologia , Modelos Imunológicos , Neuropeptídeos/imunologia , Transdução de Sinais/imunologia , Animais , Humanos
10.
J Biol Chem ; 289(21): 14583-99, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24706753

RESUMO

Vasoactive intestinal peptide (VIP) is an anti-inflammatory neuropeptide recently identified as a potential antimicrobial peptide. To overcome the metabolic limitations of VIP, we modified the native peptide sequence and generated two stable synthetic analogues (VIP51 and VIP51(6-30)) with better antimicrobial profiles. Herein we investigate the effects of both VIP analogues on cell viability, membrane integrity, and ultrastructure of various bacterial strains and Leishmania species. We found that the two VIP derivatives kill various non-pathogenic and pathogenic Gram-positive and Gram-negative bacteria as well as the parasite Leishmania major through a mechanism that depends on the interaction with certain components of the microbial surface, the formation of pores, and the disruption of the surface membrane. The cytotoxicity of the VIP derivatives is specific for pathogens, because they do not affect the viability of mammalian cells. Docking simulations indicate that the chemical changes made in the analogues are critical to increase their antimicrobial activities. Consequently, we found that the native VIP is less potent as an antibacterial and fails as a leishmanicidal. Noteworthy from a therapeutic point of view is that treatment with both derivatives increases the survival and reduces bacterial load and inflammation in mice with polymicrobial sepsis. Moreover, treatment with VIP51(6-30) is very effective at reducing lesion size and parasite burden in a model of cutaneous leishmaniasis. These results indicate that the VIP analogues emerge as attractive alternatives for treating drug-resistant infectious diseases and provide key insights into a rational design of novel agents against these pathogens.


Assuntos
Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Leishmania major/efeitos dos fármacos , Peptídeo Intestinal Vasoativo/farmacologia , Sequência de Aminoácidos , Animais , Endotoxemia/tratamento farmacológico , Endotoxemia/microbiologia , Feminino , Bactérias Gram-Negativas/genética , Bactérias Gram-Positivas/genética , Ligação de Hidrogênio , Leishmania major/genética , Leishmania major/ultraestrutura , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Viabilidade Microbiana/efeitos dos fármacos , Microscopia Eletrônica , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação Proteica , Sepse/tratamento farmacológico , Sepse/microbiologia , Análise de Sobrevida , Resultado do Tratamento , Peptídeo Intestinal Vasoativo/análogos & derivados , Peptídeo Intestinal Vasoativo/química
11.
Stem Cells ; 32(7): 1865-77, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24496748

RESUMO

Mesenchymal stem cells (MSCs) possess unique paracrine and immunosuppressive properties, which make them useful candidates for cellular therapy. Here, we address how cellular senescence influences the therapeutic potential of human MSCs (hMSCs). Senescence was induced in bone marrow-derived hMSC cultures with gamma irradiation. Control and senescent cells were tested for their immunoregulatory activity in vitro and in vivo, and an extensive molecular characterization of the phenotypic changes induced by senescence was performed. We also compared the gene expression profiles of senescent hMSCs with a collection of hMSCs used in an ongoing clinical study of Graft Versus Host disease (GVHD). Our results show that senescence induces extensive phenotypic changes in hMSCs and abrogates their protective activity in a murine model of LPS-induced lethal endotoxemia. Although senescent hMSCs retain an ability to regulate the inflammatory response on macrophages in vitro, and, in part retain their capacity to significantly inhibit lymphocyte proliferation, they have a severely impaired migratory capacity in response to proinflammatory signals, which is associated with an inhibition of the AP-1 pathway. Additionally, expression analysis identified PLEC, C8orf48, TRPC4, and ZNF14, as differentially regulated genes in senescent hMSCs that were similarly regulated in those hMSCs which failed to produce a therapeutic effect in a GVHD trial. All the observed phenotypic alterations were confirmed in replicative-senescent hMSCs. In conclusion, this study highlights important changes in the immunomodulatory phenotype of senescent hMSCs and provides candidate gene signatures which may be useful to evaluate the therapeutic potential of hMSCs used in future clinical studies.


Assuntos
Senescência Celular , Endotoxemia/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Animais , Movimento Celular , Proliferação de Células , Células Cultivadas , Endotoxemia/imunologia , Humanos , Imunomodulação , Lipopolissacarídeos/farmacologia , Linfócitos/imunologia , Masculino , Camundongos Endogâmicos BALB C , Plectina/genética , Plectina/metabolismo , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Fator de Transcrição AP-1/metabolismo , Transcriptoma
12.
Stem Cells ; 32(8): 2229-44, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24648336

RESUMO

MicroRNAs, small noncoding RNAs, regulate gene expression primarily at the posttranscriptional level. We previously found that miR-335 is critically involved in the regulation and differentiation capacity of human mesenchymal stem cells (hMSCs) in vitro. In this study, we investigated the significance of miR-335 for the therapeutic potential of hMSCs. Analysis of hMSCs in ex vivo culture demonstrated a significant and progressive increase in miR-335 that is prevented by telomerase. Expression levels of miR-335 were also positively correlated with donor age of hMSCs, and were increased by stimuli that induce cell senescence, such as γ-irradiation and standard O2 concentration. Forced expression of miR-335 resulted in early senescence-like alterations in hMSCs, including: increased SA-ß-gal activity and cell size, reduced cell proliferation capacity, augmented levels of p16 protein, and the development of a senescence-associated secretory phenotype. Furthermore, overexpression of miR-335 abolished the in vivo chondro-osseous potential of hMSCs, and disabled their immunomodulatory capacity in a murine experimental model of lethal endotoxemia. These effects were accompanied by a severely reduced capacity for cell migration in response to proinflammatory signals and a marked reduction in Protein Kinase D1 phosphorylation, resulting in a pronounced decrease of AP-1 activity. Our results demonstrate that miR-335 plays a key role in the regulation of reparative activities of hMSCs and suggests that it might be considered a marker for the therapeutic potency of these cells in clinical applications.


Assuntos
Diferenciação Celular/genética , Senescência Celular/genética , Células-Tronco Mesenquimais/fisiologia , MicroRNAs/genética , Fator de Transcrição AP-1/metabolismo , Western Blotting , Movimento Celular/genética , Citometria de Fluxo , Imunofluorescência , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Transdução Genética
13.
Circ Res ; 112(11): 1444-55, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23595952

RESUMO

RATIONALE: Proliferation and migration of smooth muscle cells (SMCs) are key steps for the progression of atherosclerosis and restenosis. Cortistatin is a multifunctional neuropeptide belonging to the somatostatin family that exerts unique functions in the nervous and immune systems. Cortistatin is elevated in plasma of patients experiencing coronary heart disease and attenuates vascular calcification. OBJECTIVE: To investigate the occurrence of vascular cortistatin and its effects on the proliferation and migration of SMCs in vitro and in vivo and to delimitate the receptors and signal transduction pathways governing its actions. METHODS AND RESULTS: SMCs from mouse carotid and human aortic arteries and from human atherosclerotic plaques highly expressed cortistatin. Cortistatin expression positively correlated with the progression of arterial intima hyperplasia. Cortistatin inhibited platelet-derived growth factor-stimulated proliferation of human aortic SMCs via binding to somatostatin receptors (sst2 and sst5) and ghrelin receptor, induction of cAMP and p38-mitogen-activated protein kinase, and inhibition of Akt activity. Moreover, cortistatin impaired lamellipodia formation and migration of human aortic SMCs toward platelet-derived growth factor by inhibiting, in a ghrelin-receptor-dependent manner, Rac1 activation and cytosolic calcium increases. These effects on SMC proliferation and migration correlated with an inhibitory action of cortistatin on the neointimal formation in 2 models of carotid arterial ligation. Endogenous cortistatin seems to play a critical role in regulating SMC function because cortistatin-deficient mice developed higher neointimal hyperplasic lesions than wild-type mice. CONCLUSIONS: Cortistatin emerges as a natural endogenous regulator of SMCs under pathological conditions and an attractive candidate for the pharmacological management of vascular diseases that course with neointimal lesion formation.


Assuntos
Aterosclerose/patologia , Lesões das Artérias Carótidas/patologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Neointima/patologia , Neuropeptídeos/metabolismo , Animais , Aorta/metabolismo , Aorta/patologia , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Lesões das Artérias Carótidas/metabolismo , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Humanos , Ligadura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Neointima/tratamento farmacológico , Neointima/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/farmacologia , RNA Mensageiro/metabolismo , Receptores de Grelina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Somatostatina/metabolismo
14.
Glia ; 62(12): 1932-42, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24995657

RESUMO

Activated microglia play a central role in the course of neurodegenerative diseases as they secrete cytotoxic substances which lead to neuronal cell death. Understanding the mechanisms that drive activation of microglia is essential to reverse this phenotype and to protect from neurodegeneration. With some exceptions, evidence indicates that changes in cell morphology from a star shape to a round and flat shape accompany the process of activation in microglia. In this study, we investigated the effect of adipose-tissue-derived mesenchymal stem cells (ASCs), which exert important anti-inflammatory actions, in microglia morphology. Microglia exposed to ASCs or their secreted factors (conditioned medium) underwent a cell shape change into a ramifying morphology in basal and inflammatory conditions, similar to that observed in microglia found in healthy brain. Colony-stimulating factor-1 secreted by ASCs played a critical role in the induction of this phenotype. Importantly, ASCs reversed the activated round phenotype induced in microglia by bacterial endotoxins. The ramifying morphology of microglia induced by ASCs was associated with a decrease of the proinflammatory cytokines tumor necrosis factor-α and interleukin-6, an increase in phagocytic activity, and the upregulation of neurotrophic factors and of Arginase-1, a marker for M2-like regulatory microglia. In addition, activation of the phosphoinositide-3-kinase/Akt pathway and the RhoGTPases Rac1 and Cdc42 played a major role in the acquisition of this phenotype. Therefore, these RhoGTPases emerge as key players in the ramification of microglia by anti-inflammatory agents like ASCs, being fundamental to maintain the tissue-surveying, central nervous system supporting state of microglia in healthy conditions.


Assuntos
Células-Tronco Mesenquimais/fisiologia , Microglia/fisiologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Animais Recém-Nascidos , Antígenos CD/metabolismo , Encéfalo/citologia , Diferenciação Celular , Tamanho Celular , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Citocinas/metabolismo , Flavonoides/farmacologia , Lipopolissacarídeos/farmacologia , Fator Estimulador de Colônias de Macrófagos/farmacologia , Células-Tronco Mesenquimais/química , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Microglia/efeitos dos fármacos , Fagocitose/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
15.
Neurobiol Dis ; 63: 141-54, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24333694

RESUMO

Clinical pain, as a consequence of inflammation or injury of peripheral organs (inflammatory pain) or nerve injury (neuropathic pain), represents a serious public health issue. Treatment of pain-related suffering requires knowledge of how pain signals are initially interpreted and subsequently transmitted and perpetuated. To limit duration and intensity of pain, inhibitory signals participate in pain perception. Cortistatin is a cyclic-neuropeptide that exerts potent inhibitory actions on cortical neurons and immune cells. Here, we found that cortistatin is a natural analgesic component of the peripheral nociceptive system produced by peptidergic nociceptive neurons of the dorsal root ganglia in response to inflammatory and noxious stimuli. Moreover, cortistatin is produced by GABAergic interneurons of deep layers of dorsal horn of spinal cord. By using cortistatin-deficient mice, we demonstrated that endogenous cortistatin critically tunes pain perception in physiological and pathological states. Furthermore, peripheral and spinal injection of cortistatin potently reduced nocifensive behavior, heat hyperalgesia and tactile allodynia in experimental models of clinical pain evoked by chronic inflammation, surgery and arthritis. The analgesic effects of cortistatin were independent of its anti-inflammatory activity and directly exerted on peripheral and central nociceptive terminals via Gαi-coupled somatostatin-receptors (mainly sstr2) and blocking intracellular signaling that drives neuronal plasticity including protein kinase A-, calcium- and Akt/ERK-mediated release of nociceptive peptides. Moreover, cortistatin could modulate, through its binding to ghrelin-receptor (GHSR1), pain-induced sensitization of secondary neurons in spinal cord. Therefore, cortistatin emerges as an anti-inflammatory factor with potent analgesic effects that offers a new approach to clinical pain therapy, especially in inflammatory states.


Assuntos
Analgésicos/uso terapêutico , Neuropeptídeos/metabolismo , Dor/tratamento farmacológico , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Células Cultivadas , Modelos Animais de Doenças , Vias de Administração de Medicamentos , Feminino , Gânglios Espinais/citologia , Inflamação/complicações , Inflamação/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neuropeptídeos/deficiência , Nitrobenzenos/uso terapêutico , Dor/etiologia , Dor/genética , Medição da Dor , Limiar da Dor/efeitos dos fármacos , Medula Espinal/citologia , Sulfonamidas/uso terapêutico , Fatores de Tempo
16.
Haematologica ; 99(7): 1168-75, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24727813

RESUMO

Aplastic anemia is a life-threatening bone marrow failure disorder characterized by peripheral pancytopenia and marrow hypoplasia. The majority of cases of aplastic anemia remain idiopathic, although hematopoietic stem cell deficiency and impaired immune responses are hallmarks underlying the bone marrow failure in this condition. Mesenchymal stem/stromal cells constitute an essential component of the bone marrow hematopoietic microenvironment because of their immunomodulatory properties and their ability to support hematopoiesis, and they have been involved in the pathogenesis of several hematologic malignancies. We investigated whether bone marrow mesenchymal stem cells contribute, directly or indirectly, to the pathogenesis of aplastic anemia. We found that mesenchymal stem cell cultures can be established from the bone marrow of aplastic anemia patients and display the same phenotype and differentiation potential as their counterparts from normal bone marrow. Mesenchymal stem cells from aplastic anemia patients support the in vitro homeostasis and the in vivo repopulating function of CD34(+) cells, and maintain their immunosuppressive and anti-inflammatory properties. These data demonstrate that bone marrow mesenchymal stem cells from patients with aplastic anemia do not have impaired functional and immunological properties, suggesting that they do not contribute to the pathogenesis of the disease.


Assuntos
Anemia Aplástica/imunologia , Anemia Aplástica/metabolismo , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Adolescente , Adulto , Idoso , Anemia Aplástica/diagnóstico , Anemia Aplástica/etiologia , Antígenos CD34/metabolismo , Estudos de Casos e Controles , Diferenciação Celular , Células Cultivadas , Criança , Técnicas de Cocultura , Feminino , Sangue Fetal/citologia , Sobrevivência de Enxerto , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Imunomodulação , Imunofenotipagem , Masculino , Células-Tronco Mesenquimais/citologia , Pessoa de Meia-Idade , Fenótipo , Adulto Jovem
18.
Arthritis Rheum ; 65(5): 1390-401, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23371349

RESUMO

OBJECTIVE: To investigate the role of the antiinflammatory neuropeptide cortistatin in chronic pain evoked by joint inflammation. METHODS: Thermal and mechanical hyperalgesia was evoked in mouse knee joints by intraplantar injection of tumor necrosis factor α and intraarticular infusion of Freund's complete adjuvant, and the analgesic effects of cortistatin, administered centrally, peripherally, and systemically, were assessed. In addition, the effects of cortistatin on the production of nociceptive peptides and the activation of pain signaling were assayed in dorsal root ganglion cultures and in inflammatory pain models. The role of endogenous cortistatin in pain sensitization and perpetuation of chronic inflammatory states was evaluated in cortistatin-deficient mice. Finally, the effect of noxious/inflammatory stimuli in the production of cortistatin by the peripheral nociceptive system was assayed in vitro and in vivo. RESULTS: Expression of cortistatin was observed in peptidergic nociceptors of the peripheral nociceptive system, and endogenous cortistatin was found to participate in the tuning of pain sensitization, especially in pathologic inflammatory conditions. Results showed that cortistatin acted both peripherally and centrally to reduce the tactile allodynia and heat hyperalgesia evoked by arthritis and peripheral tissue inflammation in mice, via mechanisms that were independent of its antiinflammatory action. These mechanisms involved direct action on nociceptive neurons and regulation of central sensitization. The analgesic effects of cortistatin in murine arthritic pain were linked to binding of the neuropeptide to somatostatin and ghrelin receptors, activation of the G protein subunit Gαi , impairment of ERK signaling, and decreased production of calcitonin gene-related peptide in primary nociceptors. CONCLUSION: These findings indicate that cortistatin is an antiinflammatory factor with potent analgesic effects that may offer a new approach to pain therapy in pathologic inflammatory states, including osteoarthritis and rheumatoid arthritis.


Assuntos
Analgesia , Artrite/tratamento farmacológico , Hiperalgesia/tratamento farmacológico , Neuropeptídeos/farmacologia , Dor/tratamento farmacológico , Animais , Artrite/induzido quimicamente , Artrite/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Sensibilização do Sistema Nervoso Central , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Adjuvante de Freund/administração & dosagem , Adjuvante de Freund/toxicidade , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Grelina/metabolismo , Grelina/farmacologia , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Injeções Intra-Articulares , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropeptídeos/deficiência , Neuropeptídeos/metabolismo , Dor/induzido quimicamente , Dor/metabolismo , Limiar da Dor , Ligação Proteica , Receptores de Grelina/metabolismo , Receptores de Somatostatina/metabolismo , Somatostatina/metabolismo , Somatostatina/farmacologia , Joelho de Quadrúpedes/efeitos dos fármacos , Joelho de Quadrúpedes/metabolismo , Joelho de Quadrúpedes/fisiopatologia , Fator de Necrose Tumoral alfa/toxicidade
19.
Gut ; 62(8): 1131-41, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22637701

RESUMO

OBJECTIVE: To investigate the effect of adipose-derived mesenchymal stromal cells (ASCs) on the activation state of macrophages (MΦ) in vitro, and the potential therapeutic effect of these cells in experimental colitis and sepsis. DESIGN: Murine bone marrow-derived macrophages were cultured with ASCs or with ASC conditioned media (ASC-MΦ) and characterised for the expression of several regulatory macrophage markers, including enzymes and cytokines, and for their immunomodulatory capacity in vitro. The therapeutic effect was investigated of ASC-MΦ in two models of experimental inflammatory colitis induced by trinitrobenzene sulphonic acid and dextran sodium sulphate, and in polymicrobial sepsis induced by caecal ligation and puncture. RESULTS: ASC-MΦ showed a phenotype that clearly differed from the classically activated macrophages or the alternatively activated macrophages induced by interleukin (IL)-4, characterised by high arginase activity, increased production of IL-10 upon restimulation and potent immunosuppressive activity on T cells and macrophages. Activation of cyclo-oxygenase-2 on ASCs seems to be critically involved in inducing this phenotype. Systemic infusion of ASC-MΦ inhibited colitis in mice, reducing mortality and weight loss while lowering the colonic and systemic levels of inflammatory cytokines. Importantly, therapeutic injection of ASC-MΦ in established chronic colitis alleviated its progression and avoided disease recurrence. Moreover, ASC-MΦ protected from severe sepsis by reducing the infiltration of inflammatory cells into various organs and by downregulating the production of several inflammatory mediators, where ASC-MΦ-derived IL-10 played a critical role. CONCLUSION: ASCs induce a distinct regulatory activation state of macrophages which possess potent immunomodulatory ability and therapeutic potential in inflammatory bowel diseases and sepsis.


Assuntos
Tecido Adiposo/citologia , Colite/prevenção & controle , Macrófagos/transplante , Células-Tronco Mesenquimais/imunologia , Sepse/prevenção & controle , Doença Aguda , Animais , Células da Medula Óssea/imunologia , Células Cultivadas , Técnicas de Cocultura , Colite/induzido quimicamente , Colite/imunologia , Colite/patologia , Meios de Cultivo Condicionados , Citocinas/biossíntese , Modelos Animais de Doenças , Humanos , Terapia de Imunossupressão/métodos , Mediadores da Inflamação/metabolismo , Ativação de Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Sepse/imunologia , Síndrome de Resposta Inflamatória Sistêmica/prevenção & controle , Resultado do Tratamento
20.
NPJ Parkinsons Dis ; 10(1): 12, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191886

RESUMO

Parkinson´s disease (PD) is a common neurodegenerative movement disorder and leucine-rich repeat kinase 2 (LRRK2) is a promising therapeutic target for disease intervention. However, the ability to stratify patients who will benefit from such treatment modalities based on shared etiology is critical for the success of disease-modifying therapies. Ciliary and centrosomal alterations are commonly associated with pathogenic LRRK2 kinase activity and can be detected in many cell types. We previously found centrosomal deficits in immortalized lymphocytes from G2019S-LRRK2 PD patients. Here, to investigate whether such deficits may serve as a potential blood biomarker for PD which is susceptible to LRKK2 inhibitor treatment, we characterized patient-derived cells from distinct PD cohorts. We report centrosomal alterations in peripheral cells from a subset of early-stage idiopathic PD patients which is mitigated by LRRK2 kinase inhibition, supporting a role for aberrant LRRK2 activity in idiopathic PD. Centrosomal defects are detected in R1441G-LRRK2 and G2019S-LRRK2 PD patients and in non-manifesting LRRK2 mutation carriers, indicating that they accumulate prior to a clinical PD diagnosis. They are present in immortalized cells as well as in primary lymphocytes from peripheral blood. These findings indicate that analysis of centrosomal defects as a blood-based patient stratification biomarker may help nominate idiopathic PD patients who will benefit from LRRK2-related therapeutics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA