Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 183(6): 1520-1535.e14, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33157038

RESUMO

ß-Coronaviruses are a family of positive-strand enveloped RNA viruses that includes the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Much is known regarding their cellular entry and replication pathways, but their mode of egress remains uncertain. Using imaging methodologies and virus-specific reporters, we demonstrate that ß-coronaviruses utilize lysosomal trafficking for egress rather than the biosynthetic secretory pathway more commonly used by other enveloped viruses. This unconventional egress is regulated by the Arf-like small GTPase Arl8b and can be blocked by the Rab7 GTPase competitive inhibitor CID1067700. Such non-lytic release of ß-coronaviruses results in lysosome deacidification, inactivation of lysosomal degradation enzymes, and disruption of antigen presentation pathways. ß-Coronavirus-induced exploitation of lysosomal organelles for egress provides insights into the cellular and immunological abnormalities observed in patients and suggests new therapeutic modalities.


Assuntos
COVID-19/metabolismo , SARS-CoV-2/metabolismo , Via Secretória , Liberação de Vírus , Fatores de Ribosilação do ADP/metabolismo , Animais , COVID-19/patologia , Feminino , Células HeLa , Compostos Heterocíclicos com 2 Anéis/farmacologia , Humanos , Lisossomos , Camundongos , Tioureia/análogos & derivados , Tioureia/farmacologia , Proteínas rab de Ligação ao GTP/antagonistas & inibidores , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7 , Tratamento Farmacológico da COVID-19
2.
Proc Natl Acad Sci U S A ; 115(11): E2604-E2613, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29483266

RESUMO

Acetyl-CoA carboxylase (ACC) is a biotin-dependent enzyme that is the target of several classes of herbicides. Malaria parasites contain a plant-like ACC, and this is the only protein predicted to be biotinylated in the parasite. We found that ACC is expressed in the apicoplast organelle in liver- and blood-stage malaria parasites; however, it is activated through biotinylation only in the liver stages. Consistent with this observation, deletion of the biotin ligase responsible for ACC biotinylation does not impede blood-stage growth, but results in late liver-stage developmental defects. Biotin depletion increases the severity of the developmental defects, demonstrating that parasite and host biotin metabolism are required for normal liver-stage progression. This finding may link the development of liver-stage malaria parasites to the nutritional status of the host, as neither the parasite nor the human host can synthesize biotin.


Assuntos
Biotina/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Fígado/parasitologia , Malária/metabolismo , Plasmodium/metabolismo , Acetil-CoA Carboxilase/metabolismo , Animais , Apicoplastos/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Células Hep G2 , Humanos , Fígado/metabolismo , Malária/parasitologia , Camundongos , Proteínas de Protozoários/metabolismo
3.
EMBO J ; 35(16): 1724-5, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27378788
4.
PLoS Pathog ; 9(9): e1003655, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086138

RESUMO

The apicoplast organelle of the malaria parasite Plasmodium falciparum contains metabolic pathways critical for liver-stage and blood-stage development. During the blood stages, parasites lacking an apicoplast can grow in the presence of isopentenyl pyrophosphate (IPP), demonstrating that isoprenoids are the only metabolites produced in the apicoplast which are needed outside of the organelle. Two of the isoprenoid biosynthesis enzymes are predicted to rely on iron-sulfur (FeS) cluster cofactors, however, little is known about FeS cluster synthesis in the parasite or the roles that FeS cluster proteins play in parasite biology. We investigated two putative FeS cluster synthesis pathways (Isc and Suf) focusing on the initial step of sulfur acquisition. In other eukaryotes, these proteins can be located in multiple subcellular compartments, raising the possibility of cross-talk between the pathways or redundant functions. In P. falciparum, SufS and its partner SufE were found exclusively the apicoplast and SufS was shown to have cysteine desulfurase activity in a complementation assay. IscS and its effector Isd11 were solely mitochondrial, suggesting that the Isc pathway cannot contribute to apicoplast FeS cluster synthesis. The Suf pathway was disrupted with a dominant negative mutant resulting in parasites that were only viable when supplemented with IPP. These parasites lacked the apicoplast organelle and its organellar genome--a phenotype not observed when isoprenoid biosynthesis was specifically inhibited with fosmidomycin. Taken together, these results demonstrate that the Suf pathway is essential for parasite survival and has a fundamental role in maintaining the apicoplast organelle in addition to any role in isoprenoid biosynthesis.


Assuntos
Apicoplastos/metabolismo , Liases de Carbono-Enxofre/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Apicoplastos/genética , Liases de Carbono-Enxofre/genética , Humanos , Proteínas Ferro-Enxofre/genética , Plasmodium falciparum/citologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Terpenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA