Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Mol Psychiatry ; 26(6): 1808-1831, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32071385

RESUMO

Maternal immune activation (MIA) disrupts the central innate immune system during a critical neurodevelopmental period. Microglia are primary innate immune cells in the brain although their direct influence on the MIA phenotype is largely unknown. Here we show that MIA alters microglial gene expression with upregulation of cellular protrusion/neuritogenic pathways, concurrently causing repetitive behavior, social deficits, and synaptic dysfunction to layer V intrinsically bursting pyramidal neurons in the prefrontal cortex of mice. MIA increases plastic dendritic spines of the intrinsically bursting neurons and their interaction with hyper-ramified microglia. Treating MIA offspring by colony stimulating factor 1 receptor inhibitors induces depletion and repopulation of microglia, and corrects protein expression of the newly identified MIA-associated neuritogenic molecules in microglia, which coalesces with correction of MIA-associated synaptic, neurophysiological, and behavioral abnormalities. Our study demonstrates that maternal immune insults perturb microglial phenotypes and influence neuronal functions throughout adulthood, and reveals a potent effect of colony stimulating factor 1 receptor inhibitors on the correction of MIA-associated microglial, synaptic, and neurobehavioral dysfunctions.


Assuntos
Microglia , Efeitos Tardios da Exposição Pré-Natal , Animais , Comportamento Animal , Encéfalo , Modelos Animais de Doenças , Feminino , Inflamação , Fator Estimulador de Colônias de Macrófagos , Camundongos , Neurônios , Gravidez , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos
2.
Curr Opin Pediatr ; 30(2): 199-203, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29346139

RESUMO

PURPOSE OF REVIEW: The rapid progress in biomarker science is on the threshold of significantly changing clinical care for infants in the neonatal ICU. Infants with neonatal brain injuries will likely be the first group whose management is dramatically altered with point-of-care, rapidly available brain biomarker analysis. Providing an interim update on progress in this area is the purpose of this review. RECENT FINDINGS: Highlighted findings from the past 18 months of publications on biomarkers in neonatal brain injury include; Specific nonbrain markers of cardiac health and global asphyxia continue to provide information on brain injury after hypoxic-ischemic encephalopathy (HIE). Prediction of injury in the piglet hypoxia-ischemia model is improved with the use of a combination score of plasma metabolites. In a neonatal piglet model of perinatal hypoxia-ischemia, a systemic proinflammatory surge of cytokines has been identified after rewarming from therapeutic hypothermia. New biomarkers identified recently include osteopontin, activin A, neutrophil gelatinase-associated lipocalin, secretoneurin, Tau and neurofilament light protein. Brain-based biomarkers differ in their ability to predict short-term in-hospital outcomes and long-term neurologic deficits. SUMMARY: Neonatal brain biomarker research is currently in its very early development with major advances still to be made.


Assuntos
Biomarcadores/sangue , Lesões Encefálicas/diagnóstico , Hipóxia-Isquemia Encefálica/complicações , Animais , Lesões Encefálicas/sangue , Lesões Encefálicas/etiologia , Humanos , Hipóxia-Isquemia Encefálica/sangue , Recém-Nascido , Prognóstico , Suínos
3.
J Neurosci ; 35(7): 3022-33, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25698740

RESUMO

The cerebral innate immune system is able to modulate brain functioning and cognitive processes. During activation of the cerebral innate immune system, inflammatory factors produced by microglia, such as cytokines and adenosine triphosphate (ATP), have been directly linked to modulation of glutamatergic system on one hand and learning and memory functions on the other hand. However, the cellular mechanisms by which microglial activation modulates cognitive processes are still unclear. Here, we used taste memory tasks, highly dependent on glutamatergic transmission in the insular cortex, to investigate the behavioral and cellular impacts of an inflammation restricted to this cortical area in rats. We first show that intrainsular infusion of the endotoxin lipopolysaccharide induces a local inflammation and increases glutamatergic AMPA, but not NMDA, receptor expression at the synaptic level. This cortical inflammation also enhances associative, but not incidental, taste memory through increase of glutamatergic AMPA receptor trafficking. Moreover, we demonstrate that ATP, but not proinflammatory cytokines, is responsible for inflammation-induced enhancement of both associative taste memory and AMPA receptor expression in insular cortex. In conclusion, we propose that inflammation restricted to the insular cortex enhances associative taste memory through a purinergic-dependent increase of glutamatergic AMPA receptor expression at the synapse.


Assuntos
Aprendizagem por Associação/fisiologia , Encefalite/fisiopatologia , Memória/fisiologia , Microglia/metabolismo , Purinérgicos , Transmissão Sináptica/fisiologia , Paladar/fisiologia , Animais , Aprendizagem por Associação/efeitos dos fármacos , Corticosterona/sangue , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalite/sangue , Encefalite/induzido quimicamente , Ácido Glutâmico/metabolismo , Lipopolissacarídeos/farmacologia , Cloreto de Lítio/farmacologia , Masculino , Memória/efeitos dos fármacos , Microglia/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Paladar/efeitos dos fármacos
4.
Brain Behav Immun ; 57: 79-93, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27301858

RESUMO

Children exposed to abuse or neglect show abnormal hippocampal development and similar findings have been reported in rodent models. Using brief daily separation (BDS), a mouse model of early life stress, we previously showed that exposure to BDS impairs hippocampal function in adulthood and perturbs synaptic maturation, synaptic pruning, axonal growth and myelination in the developing hippocampus. Given that microglia are involved in these developmental processes, we tested whether BDS impairs microglial activity in the hippocampus of 14 (during BDS) and 28-day old mice (one week after BDS). We found that BDS increased the density and altered the morphology of microglia in the hippocampus of 14-day old pups, effects that were no longer present on postnatal day (PND) 28. Despite the normal cell number and morphology seen at PND28, the molecular signature of hippocampal microglia, assessed using the NanoString immune panel, was altered at both ages. We showed that during normal hippocampal development, microglia undergo significant changes between PND14 and PND28, including reduced cell density, decreased ex vivo phagocytic activity, and an increase in the expression of genes involved in inflammation and cell migration. However, microglia harvested from the hippocampus of 28-day old BDS mice showed an increase in phagocytic activity and reduced expression of genes that normally increase across development. Promoter analysis indicated that alteration in the transcriptional activity of PU.1, Creb1, Sp1, and RelA accounted for most of the transcriptional changes seen during normal microglia development and for most of the BDS-induced changes at PND14 and PND28. These findings are the first to demonstrate that early life stress dysregulates microglial function in the developing hippocampus and to identify key transcription factors that are likely to mediate these changes.


Assuntos
Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Microglia/metabolismo , Estresse Psicológico/metabolismo , Fatores Etários , Animais , Privação Materna , Camundongos , Camundongos Endogâmicos BALB C
5.
Brain Behav Immun ; 41: 22-31, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24735929

RESUMO

Low dietary intake of the n-3 polyunsaturated fatty acids (PUFAs) is a causative factor of neurodevelopmental disorders. However the mechanisms linking n-3 PUFAs low dietary intake and neurodevelopmental disorders are poorly understood. Microglia, known mainly for their immune function in the injured or infected brain, have recently been demonstrated to play a pivotal role in regulating maturation of neuronal circuits during normal brain development. Disruption of this role during the perinatal period therefore could significantly contribute to psychopathologies with a neurodevelopmental neurodevelopmental component. N-3 PUFAs, essential lipids and key structural components of neuronal membrane phospholipids, are highly incorporated in cell membranes during the gestation and lactation phase. We previously showed that in a context of perinatal n-3 PUFAs deficiency, accretion of these latter is decreased and this is correlated to an alteration of endotoxin-induced inflammatory response. We thus postulated that dietary n-3 PUFAs imbalance alters the activity of microglia in the developing brain, leading to abnormal formation of neuronal networks. We first confirmed that mice fed with a n-3 PUFAs deficient diet displayed decreased n-3 PUFAs levels in the brain at post-natal days (PND)0 and PND21. We then demonstrated that n-3 PUFAs deficiency altered microglia phenotype and motility in the post-natal developing brain. This was paralleled by an increase in pro-inflammatory cytokines expression at PND21 and to modification of neuronal plasticity-related genes expression. Overall, our findings show for the first time that a dietary n-3 PUFAs deficiency from the first day of gestation leads to the development of a pro-inflammatory condition in the central nervous system that may contribute to neurodevelopmental alterations.


Assuntos
Encéfalo/imunologia , Ácidos Graxos Ômega-3/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Lipídeos/deficiência , Microglia/imunologia , Proteínas do Tecido Nervoso/biossíntese , Plasticidade Neuronal/imunologia , Efeitos Tardios da Exposição Pré-Natal , Animais , Contagem de Células , Movimento Celular , Córtex Cerebral/química , Cruzamentos Genéticos , Citocinas/biossíntese , Citocinas/genética , Gorduras na Dieta/administração & dosagem , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-3/análise , Feminino , Óleos de Peixe , Hipocampo/imunologia , Hipocampo/metabolismo , Hipocampo/patologia , Imunidade Inata , Lactação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/fisiologia , Proteínas do Tecido Nervoso/genética , Neuroimunomodulação , Plasticidade Neuronal/genética , Óleos de Plantas/administração & dosagem , Gravidez , Óleo de Girassol
6.
Neurosci Biobehav Rev ; 162: 105724, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38762130

RESUMO

Alzheimer's disease (AD) is prevalent around the world, yet our understanding of the disease is still very limited. Recent work suggests that the cornerstone of AD may include the inflammation that accompanies it. Failure of a normal pro-inflammatory immune response to resolve may lead to persistent central inflammation that contributes to unsuccessful clearance of amyloid-beta plaques as they form, neuronal death, and ultimately cognitive decline. Individual metabolic, and dietary (lipid) profiles can differentially regulate this inflammatory process with aging, obesity, poor diet, early life stress and other inflammatory factors contributing to a greater risk of developing AD. Here, we integrate evidence for the interface between these factors, and how they contribute to a pro-inflammatory brain milieu. In particular, we discuss the importance of appropriate polyunsaturated fatty acids (PUFA) in the diet for the metabolism of specialised pro-resolving mediators (SPMs); raising the possibility for dietary strategies to improve AD outlook.


Assuntos
Envelhecimento , Doença de Alzheimer , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Humanos , Envelhecimento/fisiologia , Envelhecimento/metabolismo , Animais , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/metabolismo , Inflamação/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiopatologia
7.
Nat Neurosci ; 26(7): 1196-1207, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37291336

RESUMO

Microglia play a critical role in brain homeostasis and disease progression. In neurodegenerative conditions, microglia acquire the neurodegenerative phenotype (MGnD), whose function is poorly understood. MicroRNA-155 (miR-155), enriched in immune cells, critically regulates MGnD. However, its role in Alzheimer's disease (AD) pathogenesis remains unclear. Here, we report that microglial deletion of miR-155 induces a pre-MGnD activation state via interferon-γ (IFN-γ) signaling, and blocking IFN-γ signaling attenuates MGnD induction and microglial phagocytosis. Single-cell RNA-sequencing analysis of microglia from an AD mouse model identifies Stat1 and Clec2d as pre-MGnD markers. This phenotypic transition enhances amyloid plaque compaction, reduces dystrophic neurites, attenuates plaque-associated synaptic degradation and improves cognition. Our study demonstrates a miR-155-mediated regulatory mechanism of MGnD and the beneficial role of IFN-γ-responsive pre-MGnD in restricting neurodegenerative pathology and preserving cognitive function in an AD mouse model, highlighting miR-155 and IFN-γ as potential therapeutic targets for AD.


Assuntos
Doença de Alzheimer , MicroRNAs , Camundongos , Animais , Doença de Alzheimer/metabolismo , Interferon gama/metabolismo , Microglia/metabolismo , Transdução de Sinais/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Placa Amiloide/metabolismo
8.
Brain Behav Immun ; 26(5): 721-31, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22085587

RESUMO

Converging epidemiological studies suggest that dietary essential n-3 polyunsaturated fatty acid (PUFA) are likely to be involved in the pathogenesis of mood and cognitive disorders linked to aging. The question arises as to whether the decreased prevalence of these symptoms in the elderly with high n-3 PUFA consumption is also associated with improved central inflammation, i.e. cytokine activation, in the brain. To answer this, we measured memory performance and emotional behavior as well as cytokine synthesis and PUFA level in the spleen and the cortex of adult and aged mice submitted to a diet with an adequate supply of n-3 PUFA in form of α-linolenic acid (α-LNA) or a n-3 deficient diet. Our results show that docosahexaenoic acid (DHA), the main n-3 PUFA in the brain, was higher in the spleen and cortex of n-3 adequate mice relative to n-3 deficient mice and this difference was maintained throughout life. Interestingly, high level of brain DHA was associated with a decrease in depressive-like symptoms throughout aging. On the opposite, spatial memory was maintained in adult but not in aged n-3 adequate mice relative to n-3 deficient mice. Furthermore, increased interleukin-6 (IL-6) and decreased IL-10 expression were found in the cortex of aged mice independently of the diets. All together, our results suggest that n-3 PUFA dietary supply in the form of α-LNA is sufficient to protect from deficits in emotional behavior but not from memory disruption and brain proinflammatory cytokine expression linked to age.


Assuntos
Envelhecimento/metabolismo , Envelhecimento/psicologia , Comportamento Animal/efeitos dos fármacos , Química Encefálica/efeitos dos fármacos , Citocinas/biossíntese , Depressão/prevenção & controle , Dieta , Ácidos Graxos Ômega-3/farmacologia , Memória de Curto Prazo/efeitos dos fármacos , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Emoções/fisiologia , Ácidos Graxos Insaturados/sangue , Feminino , Interleucina-10/biossíntese , Interleucina-10/sangue , Interleucina-6/biossíntese , Interleucina-6/sangue , Fígado/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Fosfolipídeos/metabolismo , Baço/efeitos dos fármacos , Baço/metabolismo
9.
STAR Protoc ; 3(4): 101670, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36107747

RESUMO

Numerous approaches have been developed to isolate microglia from the brain, but procedures using enzymatic dissociation at 37°C can introduce drastic transcriptomic changes and confound results from gene expression assays. Here, we present an optimized protocol for microglia isolation using mechanical homogenization. We use Dounce homogenization to homogenize mouse brain tissue into single-cell suspension. We then isolate microglia through Percoll gradient and flow cytometry. Isolated microglia exhibit a gene expression pattern without the changes induced by heated enzymatic digestion. For complete details on the use and execution of this protocol, please refer to Clayton et al. (2021).


Assuntos
Separação Celular , Microglia , Animais , Camundongos , Encéfalo , Separação Celular/métodos , Citometria de Fluxo , Transcriptoma
10.
Front Cell Neurosci ; 16: 802411, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35221920

RESUMO

Over the last century, westernization of dietary habits has led to a dramatic reduction in dietary intake of n-3 polyunsaturated fatty acids (n-3 PUFAs). In particular, low maternal intake of n-3 PUFAs throughout gestation and lactation causes defects in brain myelination. Microglia are recognized for their critical contribution to neurodevelopmental processes, such as myelination. These cells invade the white matter in the first weeks of the post-natal period, where they participate in oligodendrocyte maturation and myelin production. Therefore, we investigated whether an alteration of white matter microglia accompanies the myelination deficits observed in the brain of n-3 PUFA-deficient animals. Macroscopic imaging analysis shows that maternal n-3 PUFA deficiency decreases the density of white matter microglia around post-natal day 10. Microscopic electron microscopy analyses also revealed alterations of microglial ultrastructure, a decrease in the number of contacts between microglia and myelin sheet, and a decreased amount of myelin debris in their cell body. White matter microglia further displayed increased mitochondrial abundance and network area under perinatal n-3 PUFA deficiency. Overall, our data suggest that maternal n-3 PUFA deficiency alters the structure and function of microglial cells located in the white matter of pups early in life, and this could be the key to understand myelination deficits during neurodevelopment.

11.
Sci Adv ; 8(18): eabm2545, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35544642

RESUMO

Parvalbumin-positive (PV+) interneurons play a critical role in maintaining circuit rhythm in the brain, and their reduction is implicated in autism spectrum disorders. Animal studies demonstrate that maternal immune activation (MIA) leads to reduced PV+ interneurons in the somatosensory cortex and autism-like behaviors. However, the underlying molecular mechanisms remain largely unknown. Here, we show that MIA down-regulates microglial Gpr56 expression in fetal brains in an interleukin-17a-dependent manner and that conditional deletion of microglial Gpr56 [Gpr56 conditional knockout (cKO)] mimics MIA-induced PV+ interneuron defects and autism-like behaviors in offspring. We further demonstrate that elevated microglial tumor necrosis factor-α expression is the underlying mechanism by which MIA and Gpr56 cKO impair interneuron generation. Genetically restoring Gpr56 expression in microglia ameliorates PV+ interneuron deficits and autism-like behaviors in MIA offspring. Together, our study demonstrates that microglial GPR56 plays an important role in PV+ interneuron development and serves as a salient target of MIA-induced neurodevelopmental disorders.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Transtorno Autístico/metabolismo , Modelos Animais de Doenças , Interneurônios/metabolismo , Microglia/metabolismo , Parvalbuminas/metabolismo
12.
Mol Neurodegener ; 16(1): 18, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33752701

RESUMO

BACKGROUND: Recent studies suggest that microglia contribute to tau pathology progression in Alzheimer's disease. Amyloid plaque accumulation transforms microglia, the primary innate immune cells in the brain, into neurodegenerative microglia (MGnD), which exhibit enhanced phagocytosis of plaques, apoptotic neurons and dystrophic neurites containing aggregated and phosphorylated tau (p-tau). It remains unclear how microglia promote disease progression while actively phagocytosing pathological proteins, therefore ameliorating pathology. METHODS: Adeno-associated virus expressing P301L tau mutant (AAV-P301L-tau) was stereotaxically injected into the medial entorhinal cortex (MEC) in C57BL/6 (WT) and humanized APP mutant knock-in homozygote (AppNL-G-F) mice at 5 months of age. Mice were fed either chow containing a colony stimulating factor-1 receptor inhibitor (PLX5622) or control chow from 4 to 6 months of age to test the effect of microglia depletion. Animals were tested at 6 months of age for immunofluorescence, biochemistry, and FACS of microglia. In order to monitor microglial extracellular vesicle secretion in vivo, a novel lentiviral EV reporter system was engineered to express mEmerald-CD9 (mE-CD9) specifically in microglia, which was injected into the same region of MEC. RESULTS: Expressing P301L tau mutant in the MEC induced tau propagation to the granule cell layer of the hippocampal dentate gyrus, which was significantly exacerbated in AppNL-G-F mice compared to WT control mice. Administration of PLX5622 depleted nearly all microglia in mouse brains and dramatically reduced propagation of p-tau in WT and to a greater extent in AppNL-G-F mice, although it increased plaque burden and plaque-associated p-tau+ dystrophic neurites. Plaque-associated MGnD microglia strongly expressed an EV marker, tumor susceptibility gene 101, indicative of heightened synthesis of EVs. Intracortical injection of mE-CD9 lentivirus successfully induced microglia-specific expression of mE-CD9+ EV particles, which were significantly enhanced in Mac2+ MGnD microglia compared to Mac2- homeostatic microglia. Finally, consecutive intracortical injection of mE-CD9 lentivirus and AAV-P301L-tau into AppNL-G-F mice revealed encapsulation of p-tau in microglia-specific mE-CD9+ EVs as determined by super-resolution microscopy and immuno-electron microscopy. DISCUSSION: Our findings suggest that MGnD microglia hyper-secrete p-tau+ EVs while compacting Aß plaques and clearing NP tau, which we propose as a novel mechanistic link between amyloid plaque deposition and exacerbation of tau propagation in AppNL-G-F mice.


Assuntos
Giro Denteado/metabolismo , Córtex Entorrinal/metabolismo , Vesículas Extracelulares/metabolismo , Microglia/metabolismo , Placa Amiloide/patologia , Agregação Patológica de Proteínas/etiologia , Proteínas tau/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Feminino , Técnicas de Introdução de Genes , Vetores Genéticos/administração & dosagem , Humanos , Injeções , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação de Sentido Incorreto , Neuritos/patologia , Compostos Orgânicos/administração & dosagem , Compostos Orgânicos/farmacologia , Mutação Puntual , Agregação Patológica de Proteínas/patologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Proteínas Recombinantes/metabolismo , Proteínas tau/genética
13.
Sci Transl Med ; 13(611): eabe8455, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34524859

RESUMO

Abnormally phosphorylated tau, an early neuropathologic marker of Alzheimer's disease (AD), first occurs in the brain's entorhinal cortex layer II (ECII) and then spreads to the CA1 field of the hippocampus. Animal models of tau propagation aiming to recapitulate this phenomenon mostly show tau transfer from ECII stellate neurons to the dentate gyrus, but tau pathology in the dentate gyrus does not appear until advanced stages of AD. Wolframin-1­expressing (Wfs1+) pyramidal neurons have been shown functionally to modulate hippocampal CA1 neurons in mice. Here, we report that Wfs1+ pyramidal neurons are conserved in the ECII of postmortem human brain tissue and that Wfs1 colocalized with abnormally phosphorylated tau in brains from individuals with early AD. Wfs1+ neuron­specific expression of human P301L mutant tau in mouse ECII resulted in transfer of tau to hippocampal CA1 pyramidal neurons, suggesting spread of tau pathology as observed in the early Braak stages of AD. In mice expressing human mutant tau specifically in the ECII brain region, electrophysiological recordings of CA1 pyramidal neurons showed reduced excitability. Multielectrode array recordings of optogenetically stimulated Wfs1+ ECII axons resulted in reduced CA1 neuronal firing. Chemogenetic activation of CA1 pyramidal neurons showed a reduction in c-fos+ cells in the CA1. Last, a fear conditioning task revealed deficits in trace and contextual memory in mice overexpressing human mutant tau in the ECII. This work demonstrates tau transfer from the ECII to CA1 in mouse brain and provides an early Braak stage preclinical model of AD.


Assuntos
Córtex Entorrinal , Hipocampo , Animais , Camundongos , Neurônios
14.
Mol Neurodegener ; 15(1): 47, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811520

RESUMO

BACKGROUND: Neuronal accumulation of misfolded microtubule-associated protein tau is a hallmark of neuropathology in Alzheimer's disease, frontotemporal dementia, and other tauopathies, and has been a therapeutic target. Microglia can spread tau pathology by secreting tau-containing exosomes, although the specific molecular target is yet to be identified for the therapeutic intervention. P2X purinoceptor 7 (P2RX7) is an ATP-gated cation channel, enriched in microglia and triggers exosome secretion. The purpose of the study is to examine the therapeutic effect of an orally applicable, CNS-penetrant P2RX7 specific inhibitor on the early disease stage of a tauopathy mouse model. METHODS: Three-months-old P301S tau mice were treated with P2RX7-specific inhibitor GSK1482160 or vehicle for 30 days, followed by behavioral, biochemical and immunohistochemical assessment. GSK1482160 was also tested for exosome secretion from primary cultured murine astrocytes, neurons and microglia in vitro. RESULTS: Oral administration of GSK1482160 significantly reduced accumulation of MC1+ and Alz50+ misfolded tau in hippocampal regions, which was accompanied with reduced accumulation of Tsg101, an exosome marker, in hippocampal neurons. Proximity ligation assay demonstrated complex formation of Alz50+ tau and Tsg101 in hippocampal neurons, which was reduced by GSK1482160. On the other hand, GSK1482160 had no effect on microglial ramification or CD68 expression, which was significantly enhanced in P301S mice, or pro/anti-inflammatory cytokine gene expression. Strikingly, GSK1482160-treated P301S mice show significantly improved working and contextual memory as determined by Y-maze and fear conditioning tests. GSK1482160 also significantly increased accumulation of Tsg101 and CD81 in microglia in vivo, suggesting its suppression of P2RX7-induced exosome secretion from microglia. This effect was confirmed in vitro, as ATP-induced secretion of tau-containing exosome was significantly suppressed by GSK1482160 treatment from primary murine microglia, but not from neurons or astrocytes. DISCUSSION: The oral administration of P2RX7 inhibition mitigates disease phenotypes in P301S mice, likely by suppressing release of microglial exosomes. P2RX7 could be a novel therapeutic target for the early stage tauopathy development.


Assuntos
Exossomos/efeitos dos fármacos , Ácido Pirrolidonocarboxílico/farmacologia , Receptores Purinérgicos P2X7/efeitos dos fármacos , Tauopatias/patologia , Animais , Modelos Animais de Doenças , Exossomos/metabolismo , Camundongos , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fenótipo , Receptores Purinérgicos P2X7/metabolismo
15.
Trends Neurosci ; 42(5): 361-372, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30926143

RESUMO

The dynamics of CNS function rely upon omnidirectional communication among CNS cell types. Extracellular vesicles (EVs) have emerged as key mediators of this communication and are actively involved in response to CNS injury, mediating inflammatory response and inflammation-related neuroprotection as they display dual beneficial and detrimental roles. Neuroimmune interactions include communication between neurons and microglia, the resident macrophages within the CNS, and these interactions are a critical mediator of healthy brain functions, mounting an inflammatory response, and disease pathogenesis. This review aims to organize recent research highlighting the role of EVs in health and neurodegenerative disorders, with a specific focus on neuroimmune interactions between neurons and glia in Alzheimer's disease.


Assuntos
Doença de Alzheimer/imunologia , Encéfalo/imunologia , Vesículas Extracelulares/imunologia , Nível de Saúde , Neuroimunomodulação/fisiologia , Neurônios/imunologia , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Microglia/imunologia , Microglia/metabolismo , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/metabolismo , Neuroglia/imunologia , Neuroglia/metabolismo , Neurônios/metabolismo
16.
Neuroscience ; 422: 65-74, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31689387

RESUMO

Accumulation of microtubule associated protein tau in the substantia nigra is associated with several tauopathies including progressive supranuclear palsy (PSP). A number of studies have used mutant tau transgenic mouse model to mimic the neuropathology of tauopathies and disease phenotypes. However, tau expression in these transgenic mouse models is not specific to brain subregions, and may not recapitulate subcortical disease phenotypes of PSP. It is necessary to develop a new disease modeling system for cell and region-specific expression of pathogenic tau for modeling PSP in mouse brain. In this study, we developed a novel strategy to express P301L mutant tau to the dopaminergic neurons of substantia nigra by coupling tyrosine hydroxylase promoter Cre-driver mice with a Cre-inducible adeno-associated virus (iAAV). The results showed that P301L mutant tau was successfully transduced in the dopaminergic neurons of the substantia nigra at the presence of Cre recombinase and iAAV. Furthermore, the iAAV-tau-injected mice displayed severe motor deficits including impaired movement ability, motor balance, and motor coordination compared to the control groups over a short time-course. Immunochemical analysis revealed that tau gene transfer significantly resulted in loss of tyrosine hydroxylase-positive dopaminergic neurons and elevated phosphorylated tau in the substantia nigra. Our development of dopaminergic neuron-specific neurodegenerative mouse model with tauopathy will be helpful for studying the underlying mechanism of pathological protein propagation as well as development of new therapies.


Assuntos
Dependovirus , Transtornos Motores/fisiopatologia , Degeneração Neural/patologia , Substância Negra/patologia , Proteínas tau/fisiologia , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Vetores Genéticos , Integrases , Camundongos Transgênicos , Transtornos Motores/genética , Mutação , Fosforilação , Substância Negra/metabolismo , Paralisia Supranuclear Progressiva/genética , Transdução Genética , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas tau/biossíntese , Proteínas tau/genética , Proteínas tau/metabolismo
17.
Transl Psychiatry ; 8(1): 49, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29463821

RESUMO

Childhood maltreatment is associated with a wide range of psychopathologies including anxiety that emerge in childhood and in many cases persist in adulthood. Increased amygdala activation in response to threat and abnormal amygdala connectivity with frontolimbic brain regions, such as the hippocampus and the prefrontal cortex, are some of the most consistent findings seen in individuals exposed to childhood maltreatment. The underlying mechanisms responsible for these changes are difficult to study in humans but can be elucidated using animal models of early-life stress. Such studies are especially powerful in the mouse where precise control of the genetic background and the stress paradigm can be coupled with resting-state fMRI (rsfMRI) to map abnormal connectivity in circuits that regulate anxiety. To address this issue we first compared the effects of two models of early-life stress, limited bedding (LB) and unpredictable postnatal stress (UPS), on anxiety-like behavior in juvenile and adult mice. We found that UPS, but not LB, causes a robust increase in anxiety in juvenile and adult male mice. Next, we used rsfMRI to compare frontolimbic connectivity in control and UPS adult male mice. We found increased amygdala-prefrontal cortex and amygdala-hippocampus connectivity in UPS. The strength of the amygdala-hippocampal and amygdala-prefrontal cortex connectivity was highly correlated with anxiety-like behavior in the open-field test and elevated plus maze. These findings are the first to link hyperconnectivity in frontolimbic circuits and increased anxiety in a mouse model of early-life stress, allowing for more mechanistic understanding of parallel findings in humans.


Assuntos
Tonsila do Cerebelo/fisiopatologia , Ansiedade/fisiopatologia , Comportamento Animal/fisiologia , Conectoma/métodos , Hipocampo/fisiopatologia , Rede Nervosa/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Estresse Psicológico/fisiopatologia , Fatores Etários , Tonsila do Cerebelo/diagnóstico por imagem , Animais , Ansiedade/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Camundongos , Rede Nervosa/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Estresse Psicológico/diagnóstico por imagem
18.
Prog Neuropsychopharmacol Biol Psychiatry ; 79(Pt A): 40-48, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27154755

RESUMO

Psychological stress promotes the development and recurrence of anxiety and depressive behavioral symptoms. Basic and clinical research indicates that stress exposure can influence the neurobiology of mental health disorders through dysregulation of neuroimmune systems. Consistent with this idea several studies show that repeated stress exposure causes microglia activation and recruitment of peripheral monocytes to the brain contributing to development of anxiety- and depressive-like behavior. Further studies show that stress-induced re-distribution of peripheral monocytes leads to stress-sensitized neuroimmune responses and recurrent anxiety-like behavior. These stress-associated immune changes are important because brain resident and peripheral immune cells contribute to physiological processes that support neuroplasticity. Thus, perturbations in neuroimmune function can lead to impaired neuronal responses and synaptic plasticity deficits that underlie behavioral symptoms of mental health disorders. In this review we discuss recent advances in neuroimmune regulation of behavior and summarize studies showing that stress-induced microglia activation and monocyte trafficking in the brain contribute to the neurobiology of mental health disorders.


Assuntos
Inflamação/patologia , Transtornos Mentais/patologia , Microglia/fisiologia , Monócitos/fisiologia , Animais , Humanos , Inflamação/etiologia , Transtornos Mentais/etiologia , Microglia/patologia , Monócitos/patologia , Plasticidade Neuronal/fisiologia , Estresse Psicológico/complicações
19.
Neuroscience ; 346: 160-172, 2017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28126368

RESUMO

Brain dysfunction is a frequent complication of the systemic inflammatory response to bacterial infection or sepsis. In the present work, the effects of intravenous bacterial lipopolysaccharide (LPS) administration on cerebral arterial blood flow were assessed with time-of-flight (TOF)-based magnetic resonance angiography (MRA) in mice. Cerebral expression of the transcription factors nuclear factor-kappaB (NF-κB) and c-Fos and that of enzymes synthesizing vasoactive mediators, such as prostaglandins and nitric oxide, known to be increased under inflammatory conditions, were studied in the same animals. Time-resolved TOF MRA revealed no differences in blood flow in the internal carotids upstream of the circle of Willis, but indicated lower flow in its lateral parts as well as in the middle and anterior cerebral arteries after intravenous LPS injection as compared to saline administration. Although LPS did not increase c-Fos expression in ventral forebrain structures of these animals, it did induce NF-κB in meningeal blood vessels. LPS also increased cerebral expression of cyclooxygenase-2 and prostaglandin E synthase mRNAs, but de novo expression occurred in veins rather than in arteries. In conclusion, our work indicates that LPS-induced systemic inflammation does not necessarily affect filling of the circle of the Willis from the periphery, but that circulating LPS alters outflow from the circle of Willis to the middle and anterior cerebral arteries. These modifications in arterial flow were not related to increased cerebral synthesis of prostaglandins, but may instead be the consequence of the action of circulating prostaglandins and other vasoactive mediators on brain-irrigating arteries during systemic inflammation.


Assuntos
Artérias Cerebrais/fisiopatologia , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Inflamação/fisiopatologia , Lipopolissacarídeos/administração & dosagem , Prostaglandinas/metabolismo , Animais , Artérias Cerebrais/microbiologia , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/microbiologia , Ciclo-Oxigenase 2 , Inflamação/metabolismo , Angiografia por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA