RESUMO
Bone cells exposed to real microgravity display alterations of their cytoskeleton and focal adhesions, two major mechanosensitive structures. These structures are controlled by small GTPases of the Ras homology (Rho) family. We investigated the effects of RhoA, Rac1, and Cdc42 modulation of osteoblastic cells under microgravity conditions. Human MG-63 osteoblast-like cells silenced for RhoGTPases were cultured in the automated Biobox bioreactor (European Space Agency) aboard the Foton M3 satellite and compared to replicate ground-based controls. The cells were fixed after 69 h of microgravity exposure for postflight analysis of focal contacts, F-actin polymerization, vascular endothelial growth factor (VEGF) expression, and matrix targeting. We found that RhoA silencing did not affect sensitivity to microgravity but that Rac1 and, to a lesser extent, Cdc42 abrogation was particularly efficient in counteracting the spaceflight-related reduction of the number of focal contacts [-50% in silenced, scrambled (SiScr) controls vs. -15% for SiRac1], the number of F-actin fibers (-60% in SiScr controls vs. -10% for SiRac1), and the depletion of matrix-bound VEGF (-40% in SiScr controls vs. -8% for SiRac1). Collectively, these data point out the role of the VEGF/Rho GTPase axis in mechanosensing and validate Rac1-mediated signaling pathways as potential targets for counteracting microgravity effects.
Assuntos
Fenômenos Fisiológicos Celulares , Osteoblastos/metabolismo , RNA Interferente Pequeno/genética , Ausência de Peso , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Actinas/metabolismo , Células Cultivadas , Citoesqueleto/metabolismo , Sensação Gravitacional , Humanos , Mecanotransdução Celular , Microtúbulos/metabolismo , Osteoblastos/citologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Voo Espacial , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína cdc42 de Ligação ao GTP/antagonistas & inibidores , Proteína cdc42 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Proteínas rac1 de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/genéticaRESUMO
Two rover missions to Mars aim to detect biomolecules as a sign of extinct or extant life with, among other instruments, Raman spectrometers. However, there are many unknowns about the stability of Raman-detectable biomolecules in the martian environment, clouding the interpretation of the results. To quantify Raman-detectable biomolecule stability, we exposed seven biomolecules for 469 days to a simulated martian environment outside the International Space Station. Ultraviolet radiation (UVR) strongly changed the Raman spectra signals, but only minor change was observed when samples were shielded from UVR. These findings provide support for Mars mission operations searching for biosignatures in the subsurface. This experiment demonstrates the detectability of biomolecules by Raman spectroscopy in Mars regolith analogs after space exposure and lays the groundwork for a consolidated space-proven database of spectroscopy biosignatures in targeted environments.
RESUMO
As humans explore and settle in space, they will need to mine elements to support industries such as manufacturing and construction. In preparation for the establishment of permanent human settlements across the Solar System, we conducted the ESA BioRock experiment on board the International Space Station to investigate whether biological mining could be accomplished under extraterrestrial gravity conditions. We tested the hypothesis that the gravity (g) level influenced the efficacy with which biomining could be achieved from basalt, an abundant material on the Moon and Mars, by quantifying bioleaching by three different microorganisms under microgravity, simulated Mars and Earth gravitational conditions. One element of interest in mining is vanadium (V), which is added to steel to fabricate high strength, corrosion-resistant structural materials for buildings, transportation, tools and other applications. The results showed that Sphingomonas desiccabilis and Bacillus subtilis enhanced the leaching of vanadium under the three gravity conditions compared to sterile controls by 184.92 to 283.22%, respectively. Gravity did not have a significant effect on mean leaching, thus showing the potential for biomining on Solar System objects with diverse gravitational conditions. Our results demonstrate the potential to use microorganisms to conduct elemental mining and other bioindustrial processes in space locations with non-1 × g gravity. These same principles apply to extraterrestrial bioremediation and elemental recycling beyond Earth.
RESUMO
Microorganisms are employed to mine economically important elements from rocks, including the rare earth elements (REEs), used in electronic industries and alloy production. We carried out a mining experiment on the International Space Station to test hypotheses on the bioleaching of REEs from basaltic rock in microgravity and simulated Mars and Earth gravities using three microorganisms and a purposely designed biomining reactor. Sphingomonas desiccabilis enhanced mean leached concentrations of REEs compared to non-biological controls in all gravity conditions. No significant difference in final yields was observed between gravity conditions, showing the efficacy of the process under different gravity regimens. Bacillus subtilis exhibited a reduction in bioleaching efficacy and Cupriavidus metallidurans showed no difference compared to non-biological controls, showing the microbial specificity of the process, as on Earth. These data demonstrate the potential for space biomining and the principles of a reactor to advance human industry and mining beyond Earth.
Assuntos
Bactérias/metabolismo , Reatores Biológicos/microbiologia , Exobiologia , Gravitação , Metais Terras Raras/metabolismo , Bacillus subtilis/metabolismo , Cupriavidus/metabolismo , Microbiologia Industrial , Marte , Mineração , Lua , Silicatos , Sphingomonas/metabolismo , Ausência de PesoRESUMO
Microorganisms perform countless tasks on Earth and they are expected to be essential for human space exploration. Despite the interest in the responses of bacteria to space conditions, the findings on the effects of microgravity have been contradictory, while the effects of Martian gravity are nearly unknown. We performed the ESA BioRock experiment on the International Space Station to study microbe-mineral interactions in microgravity, simulated Mars gravity and simulated Earth gravity, as well as in ground gravity controls, with three bacterial species: Sphingomonas desiccabilis, Bacillus subtilis, and Cupriavidus metallidurans. To our knowledge, this was the first experiment to study simulated Martian gravity on bacteria using a space platform. Here, we tested the hypothesis that different gravity regimens can influence the final cell concentrations achieved after a multi-week period in space. Despite the different sedimentation rates predicted, we found no significant differences in final cell counts and optical densities between the three gravity regimens on the ISS. This suggests that possible gravity-related effects on bacterial growth were overcome by the end of the experiment. The results indicate that microbial-supported bioproduction and life support systems can be effectively performed in space (e.g., Mars), as on Earth.
RESUMO
Following an European Space Agency announcement of opportunity in 1996 for "Externally mounted payloads for 1st utilization phase" on the International Space Station (ISS), scientists working in the fields of astrobiology proposed experiments aiming at longterm exposure of a variety of chemical compounds and extremely resistant microorganisms to the hostile space environment. The ESA exposure facility EXPOSE was built and an operations' concept was prepared. The EXPOSE experiments were developed through an intensive pre-flight experiment verification test program. 12 years later, two sets of astrobiological experiments in two EXPOSE facilities have been successfully launched to the ISS for external exposure for up to 1.5 years. EXPOSE-E, now installed at the balcony of the European Columbus module, was launched in February 2008, while EXPOSE-R took off to the ISS in November 2008 and was installed on the external URM-D platform of the Russian Zvezda module in March 2009.
Assuntos
Desenho de Equipamento/instrumentação , Exobiologia , Arquitetura de Instituições de Saúde/instrumentação , Astronave , Astronautas , Meio Ambiente Extraterreno , Humanos , Agências Internacionais/organização & administração , Laboratórios/organização & administração , Viabilidade Microbiana , Voo EspacialRESUMO
The lichen Buellia frigida was exposed to space and simulated Mars analog conditions in the Biology and Mars Experiment (BIOMEX) project operated outside the International Space Station (ISS) for 1.5 years. To determine the effects of the Low Earth Orbit (LEO) conditions on the lichen symbionts, a LIVE/DEAD staining analysis test was performed. After return from the ISS, the lichen symbionts demonstrated mortality rates of up to 100% for the algal symbiont and up to 97.8% for the fungal symbiont. In contrast, the lichen symbiont controls exhibited mortality rates of 10.3% up to 31.9% for the algal symbiont and 14.5% for the fungal symbiont. The results performed in the BIOMEX Mars simulation experiment on the ISS indicate that the potential for survival and the resistance of the lichen B. frigida to LEO conditions are very low. It is unlikely that Mars could be inhabited by this lichen, even for a limited amount of time, or even not habitable planet for the tested lichen symbionts.
Assuntos
Exobiologia , Meio Ambiente Extraterreno , Líquens/fisiologia , MarteRESUMO
The International Space Station (ISS) is a unique habitat for humans and microorganisms. Here, we report the results of the ISS experiment EXTREMOPHILES, including the analysis of microbial communities from several areas aboard at three time points. We assess microbial diversity, distribution, functional capacity and resistance profile using a combination of cultivation-independent analyses (amplicon and shot-gun sequencing) and cultivation-dependent analyses (physiological and genetic characterization of microbial isolates, antibiotic resistance tests, co-incubation experiments). We show that the ISS microbial communities are highly similar to those present in ground-based confined indoor environments and are subject to fluctuations, although a core microbiome persists over time and locations. The genomic and physiological features selected by ISS conditions do not appear to be directly relevant to human health, although adaptations towards biofilm formation and surface interactions were observed. Our results do not raise direct reason for concern with respect to crew health, but indicate a potential threat towards material integrity in moist areas.
Assuntos
Archaea/classificação , Bactérias/classificação , Fungos/classificação , Saúde , Microbiota/fisiologia , Voo Espacial , Archaea/genética , Archaea/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Biofilmes/crescimento & desenvolvimento , Extremófilos , Fungos/genética , Fungos/isolamento & purificação , Interações entre Hospedeiro e Microrganismos , Humanos , Metagenômica , Microbiota/genética , Filogenia , RNA Ribossômico 16S/genéticaRESUMO
A kombucha multimicrobial culture (KMC) was exposed to simulated Mars-like conditions in low-Earth orbit (LEO). The study was part of the Biology and Mars Experiment (BIOMEX), which was accommodated in the European Space Agency's EXPOSE-R2 facility, outside the International Space Station. The aim of the study was to investigate the capability of a KMC microecosystem to survive simulated Mars-like conditions in LEO. During the 18-month exposure period, desiccated KMC samples, represented by living cellulose-based films, were subjected to simulated anoxic Mars-like conditions and ultraviolet (UV) radiation, as prevalent at the surface of present-day Mars. Postexposure analysis demonstrated that growth of both the bacterial and yeast members of the KMC community was observed after 60 days of incubation; whereas growth was detected after 2 days in the initial KMC. The KMC that was exposed to extraterrestrial UV radiation showed degradation of DNA, alteration in the composition and structure of the cellular membranes, and an inhibition of cellulose synthesis. In the "space dark control" (exposed to LEO conditions without the UV radiation), the diversity of the microorganisms that survived in the biofilm was reduced compared with the ground-based controls. This was accompanied by structural dissimilarities in the extracellular membrane vesicles. After a series of subculturing, the revived communities restored partially their structure and associated activities.
Assuntos
Biofilmes , Exobiologia , Chá de Kombucha/microbiologia , Marte , Consórcios Microbianos/fisiologia , Membrana Celular/fisiologia , DNA/metabolismo , Consórcios Microbianos/efeitos da radiaçãoRESUMO
BIOMEX (BIOlogy and Mars EXperiment) is an ESA/Roscosmos space exposure experiment housed within the exposure facility EXPOSE-R2 outside the Zvezda module on the International Space Station (ISS). The design of the multiuser facility supports-among others-the BIOMEX investigations into the stability and level of degradation of space-exposed biosignatures such as pigments, secondary metabolites, and cell surfaces in contact with a terrestrial and Mars analog mineral environment. In parallel, analysis on the viability of the investigated organisms has provided relevant data for evaluation of the habitability of Mars, for the limits of life, and for the likelihood of an interplanetary transfer of life (theory of lithopanspermia). In this project, lichens, archaea, bacteria, cyanobacteria, snow/permafrost algae, meristematic black fungi, and bryophytes from alpine and polar habitats were embedded, grown, and cultured on a mixture of martian and lunar regolith analogs or other terrestrial minerals. The organisms and regolith analogs and terrestrial mineral mixtures were then exposed to space and to simulated Mars-like conditions by way of the EXPOSE-R2 facility. In this special issue, we present the first set of data obtained in reference to our investigation into the habitability of Mars and limits of life. This project was initiated and implemented by the BIOMEX group, an international and interdisciplinary consortium of 30 institutes in 12 countries on 3 continents. Preflight tests for sample selection, results from ground-based simulation experiments, and the space experiments themselves are presented and include a complete overview of the scientific processes required for this space experiment and postflight analysis. The presented BIOMEX concept could be scaled up to future exposure experiments on the Moon and will serve as a pretest in low Earth orbit.
Assuntos
Cianobactérias/fisiologia , Exobiologia , Líquens/fisiologia , Marte , Biofilmes , Cianobactérias/efeitos da radiação , Deinococcus/fisiologia , Deinococcus/efeitos da radiação , Meio Ambiente Extraterreno , Líquens/efeitos da radiação , Marchantia/fisiologia , Marchantia/efeitos da radiação , Methanosarcina/fisiologia , Methanosarcina/efeitos da radiação , Minerais , Raios UltravioletaRESUMO
We launched a cryptoendolithic habitat, made of a gneissic impactite inoculated with Chroococcidiopsis sp., into Earth orbit. After orbiting the Earth for 16 days, the rock entered the Earth's atmosphere and was recovered in Kazakhstan. The heat of entry ablated and heated the rock to a temperature well above the upper temperature limit for life to below the depth at which light levels are insufficient for photosynthetic organisms ( approximately 5 mm), thus killing all of its photosynthetic inhabitants. This experiment shows that atmospheric transit acts as a strong biogeographical dispersal filter to the interplanetary transfer of photosynthesis. Following atmospheric entry we found that a transparent, glassy fusion crust had formed on the outside of the rock. Re-inoculated Chroococcidiopsis grew preferentially under the fusion crust in the relatively unaltered gneiss beneath. Organisms under the fusion grew approximately twice as fast as the organisms on the control rock. Thus, the biologically destructive effects of atmospheric transit can generate entirely novel and improved endolithic habitats for organisms on the destination planetary body that survive the dispersal filter. The experiment advances our understanding of how island biogeography works on the interplanetary scale.
Assuntos
Meio Ambiente Extraterreno , Fotossíntese , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/metabolismo , Ecossistema , Exobiologia , Fenômenos Geológicos , Geologia , Voo EspacialRESUMO
On July 23, 2014, the Progress cargo spacecraft 56P was launched from Baikonur to the International Space Station (ISS), carrying EXPOSE-R2, the third ESA (European Space Agency) EXPOSE facility, the second EXPOSE on the outside platform of the Russian Zvezda module, with four international astrobiological experiments into space. More than 600 biological samples of archaea, bacteria (as biofilms and in planktonic form), lichens, fungi, plant seeds, triops eggs, mosses and 150 samples of organic compounds were exposed to the harsh space environment and to parameters similar to those on the Mars surface. Radiation dosimeters distributed over the whole facility complemented the scientific payload. Three extravehicular activities later the chemical samples were returned to Earth on March 2, 2016, with Soyuz 44S, having spent 588 days in space. The biological samples arrived back later, on June 18, 2016, with 45S, after a total duration in space of 531 days. The exposure of the samples to Low Earth Orbit vacuum lasted for 531 days and was divided in two parts: protected against solar irradiation during the first 62 days, followed by exposure to solar radiation during the subsequent 469 days. In parallel to the space mission, a Mission Ground Reference (MGR) experiment with a flight identical Hardware and a complete flight identical set of samples was performed at the premises of DLR (German Aerospace Center) in Cologne by MUSC (Microgravity User Support Center), according to the mission data either downloaded from the ISS (temperature data, facility status, inner pressure status) or provided by RedShift Design and Engineering BVBA, Belgium (calculated ultra violet radiation fluence data). In this paper, the EXPOSE-R2 facility, the experimental samples, mission parameters, environmental parameters, and the overall mission and MGR sequences are described, building the background for the research papers of the individual experiments, their analysis and results.
RESUMO
The contributions of Svante Arrhenius, William Thomson, Hermann von Helmholtz, Hermann Richter, and Ferdinand Cohn to the development of the Panspermia theory have extensively been reviewed by Arrhenius himself (1908), Oparin ( 1938 ), and Kamminga ( 1982 ). Reading the original publications reveals the pivotal role that Charles Darwin must have played in shaping their ideas-an aspect that has not been highlighted before. It is argued that The Origin of Species not only kick-started the scientific development of the Panspermia theory in the 19(th) century but that biological evolution was an integral building block of it.
Assuntos
Evolução Biológica , Exobiologia/história , Modelos Biológicos , Origem da Vida , Planetas , História do Século XIX , História do Século XX , PublicaçõesRESUMO
The aim of this paper is to present the time profile of cosmic radiation exposure obtained by the Radiation Risk Radiometer-Dosimeter during the EXPOSE-E mission in the European Technology Exposure Facility on the International Space Station's Columbus module. Another aim is to make the obtained results available to other EXPOSE-E teams for use in their data analysis. Radiation Risk Radiometer-Dosimeter is a low-mass and small-dimension automatic device that measures solar radiation in four channels and cosmic ionizing radiation as well. The main results of the present study include the following: (1) three different radiation sources were detected and quantified-galactic cosmic rays (GCR), energetic protons from the South Atlantic Anomaly (SAA) region of the inner radiation belt, and energetic electrons from the outer radiation belt (ORB); (2) the highest daily averaged absorbed dose rate of 426 µGy d(-1) came from SAA protons; (3) GCR delivered a much smaller daily absorbed dose rate of 91.1 µGy d(-1), and the ORB source delivered only 8.6 µGy d(-1). The analysis of the UV and temperature data is a subject of another article (Schuster et al., 2012 ).
Assuntos
Radiação Cósmica , Monitoramento de Radiação/instrumentação , Astronave , Prótons , Monitoramento de Radiação/métodos , Radiometria/instrumentação , Voo EspacialRESUMO
The multi-user facility EXPOSE-E was designed by the European Space Agency to enable astrobiology research in space (low-Earth orbit). On 7 February 2008, EXPOSE-E was carried to the International Space Station (ISS) on the European Technology Exposure Facility (EuTEF) platform in the cargo bay of Space Shuttle STS-122 Atlantis. The facility was installed at the starboard cone of the Columbus module by extravehicular activity, where it remained in space for 1.5 years. EXPOSE-E was returned to Earth with STS-128 Discovery on 12 September 2009 for subsequent sample analysis. EXPOSE-E provided accommodation in three exposure trays for a variety of astrobiological test samples that were exposed to selected space conditions: either to space vacuum, solar electromagnetic radiation at >110 nm and cosmic radiation (trays 1 and 3) or to simulated martian surface conditions (tray 2). Data on UV radiation, cosmic radiation, and temperature were measured every 10 s and downlinked by telemetry. A parallel mission ground reference (MGR) experiment was performed on ground with a parallel set of hardware and samples under simulated space conditions. EXPOSE-E performed a successful 1.5-year mission in space.
Assuntos
Exobiologia , Arquitetura de Instituições de Saúde , Voo Espacial , Radiação Cósmica , Planeta Terra , Desenho de Equipamento , Raios UltravioletaRESUMO
The PROCESS (PRebiotic Organic ChEmistry on the Space Station) experiment was part of the EXPOSE-E payload outside the European Columbus module of the International Space Station from February 2008 to August 2009. During this interval, organic samples were exposed to space conditions to simulate their evolution in various astrophysical environments. The samples used represent organic species related to the evolution of organic matter on the small bodies of the Solar System (carbonaceous asteroids and comets), the photolysis of methane in the atmosphere of Titan, and the search for organic matter at the surface of Mars. This paper describes the hardware developed for this experiment as well as the results for the glycine solid-phase samples and the gas-phase samples that were used with regard to the atmosphere of Titan. Lessons learned from this experiment are also presented for future low-Earth orbit astrochemistry investigations.