Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(1): 266-276, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36562683

RESUMO

Interactions of heavy metals with charged mineral surfaces control their mobility in the environment. Here, we investigate the adsorption of Y(III) onto the orthoclase (001) basal plane, the former as a representative of rare earth elements and an analogue of trivalent actinides and the latter as a representative of naturally abundant K-feldspar minerals. We apply in situ high-resolution X-ray reflectivity to determine the sorption capacity and molecular distribution of adsorbed Y species as a function of the Y3+ concentration, [Y3+], at pH 7 and 5. With [Y3+] ≥ 1 mM at pH 7, we observe an inner-sphere (IS) sorption complex at a distance of ∼1.5 Å from the surface and an outer-sphere (OS) complex at 3-4 Å. Based on the adsorption height of the IS complex, a bidentate, binuclear binding mode, in which Y3+ binds to two terminal oxygens, is proposed. In contrast, mostly OS sorption is observed at pH 5. The observed maximum Y coverage is ∼1.3 Y3+/AUC (AUC: area of the unit cell = 111.4 Å2) for all the investigated pH values and Y concentrations, which is in the expected range based on the estimated surface charge of orthoclase (001).


Assuntos
Metais Pesados , Silicatos , Raios X , Minerais , Adsorção
2.
Environ Sci Technol ; 55(8): 4871-4879, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33705108

RESUMO

The interaction of Eu(III) with thin sections of migmatized gneiss from the Bukov Underground Research Facility (URF), Czech Republic, was characterized by microfocus time-resolved laser-induced luminescence spectroscopy (µTRLFS) with a spatial resolution of ∼20 µm, well below typical grain sizes of the material. By this approach, sorption processes can be characterized on the molecular level while maintaining the relationship of the speciation with mineralogy and topography. The sample mineralogy was characterized by powder X-ray diffraction and Raman microscopy, and the sorption was independently quantified by autoradiography using 152Eu. Representative µTRLFS studies over large areas of multiple mm2 reveal that sorption on the heterogeneous material is not dominated by any of the typical major constituent minerals (quartz, feldspar, and mica). Instead, minor phases such as chlorite and prehnite control the Eu(III) distribution, despite their low contribution to the overall composition of the material, as well as common but less studied phases like Mg-hornblende. In particular, prehnite shows high a sorption uptake as well as strong binding of Eu to the mineral surface. Sorption on prehnite and hornblende happens at the expense of feldspar, which showed the highest sorption uptake in a previous spatially resolved study on granitic rock. Similarly, sorption on quartz is reduced, even though only low quantities of strongly bound Eu(III) were found here previously. Our results illustrate how competition of mineral surfaces for adsorbing cations drives the metal distribution in heterogeneous systems.


Assuntos
Minerais , Quartzo , Adsorção , República Tcheca , Metais
3.
iScience ; 27(1): 108695, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38205262

RESUMO

Improvement of alkaline water electrolysis is a key enabler for quickly scaling up green hydrogen production. Fe is omnipresent within most industrial alkaline water electrolyzers and its effect on electrolyzer performance needs to be assessed. We conducted three-electrode and flow cell experiments with electrolyte Fe and Ni electrodes. Three-electrode cell experiments show that Fe ([Fe] = 6-357 µM; ICP-OES) promotes HER and OER by lowering both overpotentials by at least 100 mV at high current densities (T = 35°C-91°C). The overpotential of a zero-gap flow cell was decreased by 200 mV when increasing the Fe concentration ([Fe] = 13-549 µM, T = 21°C-75°C). HER benefits from the formation of Fe dendrite layers (SEM/EDX, XPS), which prevent NiHx formation and increase the overall active area. The OER benefits from the formation of mixed Ni/Fe oxyhydroxides leading to better catalytic activity and Tafel slope reduction.

4.
Sci Total Environ ; 843: 156920, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35753478

RESUMO

To assess a reliable safety case for future deep underground repositories for highly active nuclear waste the retention of radionuclides by the surrounding host rock must be understood comprehensively. Retention is influenced by several parameters such as mineral heterogeneity and surface roughness, as well as pore water chemistry (e.g., pH). However, the interplay between those parameters is not yet well understood. Therefore, we present a correlative spectromicroscopic approach to investigate sorption of the actinide Cm(III) on: 1) bulk K-feldspar crystals to determine the effect of surface roughness and pH (5.5 and 6.9) and 2) a large feldspar grain as part of a complex crystalline rock system to observe how sorption is influenced by the surrounding heterogeneous mineralogy. Our findings show that rougher K-feldspar surfaces exhibit increased Cm(III) uptake and stronger complexation. Similarly, increasing pH leads to higher surface loading and stronger Cm(III) binding to the surface. Within a heterogeneous mineralogical system sorption is further affected by neighboring mineral dissolution and competitive sorption between mineral phases such as mica and feldspar. The obtained results express a need for investigating relevant processes on multiple scales of dimension and complexity to better understand trivalent radionuclide retention by a potential repository host rock.


Assuntos
Cúrio , Compostos de Potássio , Silicatos de Alumínio , Radioisótopos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA