Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 79(6): 320, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35622146

RESUMO

Cellular mechanophenotype is often a defining characteristic of conditions like cancer malignancy/metastasis, cardiovascular disease, lung and liver fibrosis, and stem cell differentiation. However, acquiring living cells based on mechanophenotype is challenging for conventional cell sorters due to a lack of biomarkers. In this study, we demonstrate a workflow for surface protein discovery associated with cellular mechanophenotype. We sorted heterogeneous adipose-derived stem/stromal cells (ASCs) into groups with low vs. high lamin A/C, an intracellular protein linked to whole-cell mechanophenotype. Proteomic data of enriched groups identified surface protein candidates as potential biochemical proxies for ASC mechanophenotype. Select surface biomarkers were used for live-cell enrichment, with subsequent single-cell mechanical testing and lineage-specific differentiation. Ultimately, we identified CD44 to have a strong inverse correlation with whole-cell elastic modulus, with CD44lo cells exhibiting moduli three times greater than that of CD44hi cells. Functionally, these stiff and soft ASCs showed enhanced osteogenic and adipogenic differentiation potential, respectively. The described workflow can be replicated for any phenotype with a known correlated intracellular protein, allowing for the acquisition of live cells for further characterization, diagnostics, or therapeutics.


Assuntos
Adipogenia , Proteômica , Biomarcadores/metabolismo , Diferenciação Celular , Proteínas de Membrana
2.
Bioconjug Chem ; 29(2): 335-342, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29272914

RESUMO

Gene expression is used extensively to describe cellular characteristics and behaviors; however, most methods of assessing gene expression are unsuitable for living samples, requiring destructive processes such as fixation or lysis. Recently, molecular beacons have become a viable tool for live-cell imaging of mRNA molecules in situ. Historically, beacon-mediated imaging has been limited to fluorescence-based approaches. We propose the design and synthesis of a novel molecular beacon for magnetic resonance detection of any desired target nucleotide sequence. The biologically compatible synthesis incorporates commonly used bioconjugation reactions in aqueous conditions and is accessible for laboratories without extensive synthesis capabilities. The resulting beacon uses fluorine (19F) as a reporter, which is broadened, or turned "off", via paramagnetic relaxation enhancement from a stabilized nitroxide radical spin label when the beacon is not bound to its nucleic acid target. Therefore, the 19F NMR signal of the beacon is quenched in its hairpin conformation when the spin label and the 19F substituent are held in proximity, but the signal is recovered upon beacon hybridization to its specific complementary nucleotide sequence by physical separation of the radical from the 19F reporter. This study establishes a path for magnetic resonance-based assessment of specific mRNA expression, providing new possibilities for applying molecular beacon technology in living systems.


Assuntos
Corantes Fluorescentes/química , Flúor/química , Espectroscopia de Ressonância Magnética/métodos , Sondas de Oligonucleotídeos/química , RNA Mensageiro/análise , Expressão Gênica , Hibridização de Ácido Nucleico/métodos , Sondas de Oligonucleotídeos/genética , RNA Mensageiro/genética
3.
Cell Mol Bioeng ; 14(3): 267-277, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34109005

RESUMO

INTRODUCTION: Antibodies are an essential research tool for labeling surface proteins but can potentially influence the behavior of proteins and cells to which they bind. Because of this, researchers and clinicians are interested in the persistence of these antibodies, particularly for live-cell applications. We developed an easily adoptable method for researchers to characterize antibody removal timelines for any cell-antibody combination, with the benefit of studying broad, hypothesized mechanisms of antibody removal. METHODS: We developed a method using four experimental conditions to elucidate the contributions of possible factors influencing antibody removal: cell proliferation, internalization, permanent dissociation, and environmental perturbation. This method was tested on adipose-derived stem cells and a human lung fibroblast cell line with anti-CD44, CD90, and CD105 antibodies. The persistence of the primary antibody was probed using a fluorescent secondary antibody daily over 10 days. Relative contributions by the antibody removal mechanisms were quantified based on differences between the four culture conditions. RESULTS: Greater than 90% of each antibody tested was no longer present on the surface of the two cell types after 5 days, with removal observed in as little as 1 day post-labeling. Anti-CD90 antibody was primarily removed by environmental perturbation, anti-CD105 antibody by internalization, and anti-CD44 antibody by a combination of all four factors. CONCLUSIONS: Antibody removal mechanism depended on the specific antibody tested, while removal timelines for the same antibody depended more on cell type. This method should be broadly relevant to researchers interested in quantifying an initial timeframe for uninhibited use of antibody-labeled cells. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12195-021-00670-3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA