Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Neurobiol Dis ; 190: 106377, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38092270

RESUMO

Tropomyosin receptor kinase B (TrkB) and its primary ligand brain-derived neurotrophic factor (BDNF) are expressed in the neuromuscular system, where they affect neuronal survival, differentiation, and functions. Changes in BDNF levels and full-length TrkB (TrkB-FL) signaling have been revealed in spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS), two common forms of motor neuron diseases that are characterized by defective neuromuscular junctions in early disease stages and subsequently progressive muscle weakness. This review summarizes the current understanding of BDNF/TrkB-FL-related research in SMA and ALS, with an emphasis on their alterations in the neuromuscular system and possible BDNF/TrkB-FL-targeting therapeutic strategies. The limitations of current studies and future directions are also discussed, giving the hope of discovering novel and effective treatments.


Assuntos
Esclerose Lateral Amiotrófica , Atrofia Muscular Espinal , Humanos , Fator Neurotrófico Derivado do Encéfalo , Neurônios Motores/fisiologia , Tropomiosina , Receptor trkB
2.
EMBO Rep ; 23(9): e55432, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35856391

RESUMO

The P-TEFb complex promotes transcription elongation by releasing paused RNA polymerase II. P-TEFb itself is known to be inactivated through binding to the non-coding RNA 7SK but there is only limited information about mechanisms regulating their association. Here, we show that cells deficient in the RNA-binding protein hnRNP R, a known 7SK interactor, exhibit increased transcription due to phosphorylation of RNA polymerase II. Intriguingly, loss of hnRNP R promotes the release of P-TEFb from 7SK, accompanied by enhanced hnRNP A1 binding to 7SK. Additionally, we found that hnRNP R interacts with BRD4, and that hnRNP R depletion increases BRD4 binding to the P-TEFb component CDK9. Finally, CDK9 is stabilized upon loss of hnRNP R and its association with Cyclin K is enhanced. Together, our results indicate that hnRNP R negatively regulates transcription by modulating the activity and stability of the P-TEFb complex, exemplifying the multimodal regulation of P-TEFb by an RNA-binding protein.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas , Proteínas Nucleares , Fator B de Elongação Transcricional Positiva , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células HeLa , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Longo não Codificante , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
3.
J Cell Sci ; 134(22)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34668554

RESUMO

In neurons, the endoplasmic reticulum (ER) forms a highly dynamic network that enters axons and presynaptic terminals and plays a central role in Ca2+ homeostasis and synapse maintenance; however, the underlying mechanisms involved in regulation of its dynamic remodeling as well as its function in axon development and presynaptic differentiation remain elusive. Here, we used high-resolution microscopy and live-cell imaging to investigate rapid movements of the ER and ribosomes in axons of cultured motoneurons after stimulation with brain-derived neurotrophic factor. Our results indicate that the ER extends into axonal growth cone filopodia, where its integrity and dynamic remodeling are regulated mainly by actin and the actin-based motor protein myosin VI (encoded by Myo6). Additionally, we found that in axonal growth cones, ribosomes assemble into 80S subunits within seconds and associate with the ER in response to extracellular stimuli, which describes a novel function of axonal ER in dynamic regulation of local translation. This article has an associated First Person interview with Chunchu Deng, joint first author of the paper.


Assuntos
Axônios , Terminações Pré-Sinápticas , Retículo Endoplasmático , Humanos , Neurônios Motores , Ribossomos
4.
J Affect Disord ; 361: 217-223, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38876314

RESUMO

BACKGROUND: Increasing evidence supports that depression including major depressive disorder (MDD) is associated with an increased risk of falls. However, some studies suggest no association between MDD and falls. Therefore, the specific causal relationship whereby MDD affects the risk of falls remains elusive, and the potential mediators are unclear. METHODS: Summary-level data for MDD and falls were collected from the Genome-wide association studies (GWAS) in this study. Mendelian randomization (MR) and multivariable MR (MVMR) analyses were performed to evaluate the causal associations between MDD and falls. A Two-step MR analysis was employed to analyze the mediating effect of nonsteroidal anti-inflammatory drugs (NSAIDs) on the causal association between MDD and the risk of falls. RESULTS: Using the inverse-variance weighted (IVW) method, genetically predicted MDD was associated with an increased risk of falls (ß = 0.15, SE = 0.034; P = 1.61E-5). MVMR and two-step MR analyses demonstrated that MDD was a causal determinant of increased falls independent of body mass index (BMI), smoking initiation, and alcohol consumption and that this causal relationship was mediated by NSAID medication. LIMITATIONS: Extracted GWAS summary statistics are from European ancestry. Stratified analyses by sex and age were not included in our study. Therefore, it is unclear whether the results are the same for other ethnic groups, genders, and ages. CONCLUSIONS: Our results demonstrate that MDD is independently associated with an increased risk of falls, in which NSAIDs mediate the association. This study suggests that avoiding the use of NSAIDs may reduce the risk of falls in patients diagnosed with MDD.

5.
Front Neurosci ; 17: 1187486, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304023

RESUMO

Phantom limb pain (PLP) is a common sequela of amputation, experienced by 50-80% of amputees. Oral analgesics as the first-line therapy have limited effects. Since PLP usually affects activities of daily living and the psychological conditions of patients, effective treatments are imperatively needed. In this case study, a 49-year-old man was admitted to our hospital because of uncontrollable paroxysmal pain in his missing and residual leg. Due to severe injuries in a truck accident, the right lower limb of the patient was surgically amputated ~5 years ago. Around 1 month after amputation, he felt pain in his lost leg and PLP was diagnosed. Then, he started taking oral analgesics, but the pain still occurred. After admission on July 9, 2022, the patient received treatments of mirror therapy and magnetic stimulation to the sacral plexus. 1-month treatments reduced the frequency and intensity of pain in the phantom limb and the stump, without any adverse events. Analysis of high-resolution three-dimensional T1-weighted brain volume images at the end of 2-month treatments showed alterations in the thickness of cortex regions related to pain processing, compared to that before treatment. This case study gives us hints that one or both interventions of mirror therapy and sacral plexus magnetic stimulation effectively relieved PLP and stump limb pain. These non-invasive, low-cost and easily conducted treatments could be good options for PLP. But randomized controlled trials with a large number of cases are required to confirm their efficacy and safety.

6.
J Cell Biol ; 222(3)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36607273

RESUMO

Plastin 3 (PLS3) is an F-actin-bundling protein that has gained attention as a modifier of spinal muscular atrophy (SMA) pathology. SMA is a lethal pediatric neuromuscular disease caused by loss of or mutations in the Survival Motor Neuron 1 (SMN1) gene. Pathophysiological hallmarks are cellular maturation defects of motoneurons prior to degeneration. Despite the observed beneficial modifying effect of PLS3, the mechanism of how it supports F-actin-mediated cellular processes in motoneurons is not yet well understood. Our data reveal disturbed F-actin-dependent translocation of the Tropomyosin receptor kinase B (TrkB) to the cell surface of Smn-deficient motor axon terminals, resulting in reduced TrkB activation by its ligand brain-derived neurotrophic factor (BDNF). Improved actin dynamics by overexpression of hPLS3 restores membrane recruitment and activation of TrkB and enhances spontaneous calcium transients by increasing Cav2.1/2 "cluster-like" formations in SMA axon terminals. Thus, our study provides a novel role for PLS3 in supporting correct alignment of transmembrane proteins, a key mechanism for (moto)-neuronal development.


Assuntos
Actinas , Proteínas de Membrana , Proteínas dos Microfilamentos , Atrofia Muscular Espinal , Receptor trkB , Humanos , Actinas/metabolismo , Proteínas de Transporte/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Receptor trkB/metabolismo
7.
Transl Neurodegener ; 11(1): 31, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35650592

RESUMO

BACKGROUND: Axonal degeneration and defects in neuromuscular neurotransmission represent a pathological hallmark in spinal muscular atrophy (SMA) and other forms of motoneuron disease. These pathological changes do not only base on altered axonal and presynaptic architecture, but also on alterations in dynamic movements of organelles and subcellular structures that are not necessarily reflected by static histopathological changes. The dynamic interplay between the axonal endoplasmic reticulum (ER) and ribosomes is essential for stimulus-induced local translation in motor axons and presynaptic terminals. However, it remains enigmatic whether the ER and ribosome crosstalk is impaired in the presynaptic compartment of motoneurons with Smn (survival of motor neuron) deficiency that could contribute to axonopathy and presynaptic dysfunction in SMA. METHODS: Using super-resolution microscopy, proximity ligation assay (PLA) and live imaging of cultured motoneurons from a mouse model of SMA, we investigated the dynamics of the axonal ER and ribosome distribution and activation. RESULTS: We observed that the dynamic remodeling of ER was impaired in axon terminals of Smn-deficient motoneurons. In addition, in axon terminals of Smn-deficient motoneurons, ribosomes failed to respond to the brain-derived neurotrophic factor stimulation, and did not undergo rapid association with the axonal ER in response to extracellular stimuli. CONCLUSIONS: These findings implicate impaired dynamic interplay between the ribosomes and ER in axon terminals of motoneurons as a contributor to the pathophysiology of SMA and possibly also other motoneuron diseases.


Assuntos
Doença dos Neurônios Motores , Atrofia Muscular Espinal , Animais , Axônios/patologia , Axônios/fisiologia , Retículo Endoplasmático , Camundongos , Doença dos Neurônios Motores/patologia , Neurônios Motores , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Ribossomos
8.
Acta Neuropathol Commun ; 8(1): 116, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709255

RESUMO

Protein inclusions containing the RNA-binding protein TDP-43 are a pathological hallmark of amyotrophic lateral sclerosis and other neurodegenerative disorders. The loss of TDP-43 function that is associated with these inclusions affects post-transcriptional processing of RNAs in multiple ways including pre-mRNA splicing, nucleocytoplasmic transport, modulation of mRNA stability and translation. In contrast, less is known about the role of TDP-43 in axonal RNA metabolism in motoneurons. Here we show that depletion of Tdp-43 in primary motoneurons affects axon growth. This defect is accompanied by subcellular transcriptome alterations in the axonal and somatodendritic compartment. The axonal localization of transcripts encoding components of the cytoskeleton, the translational machinery and transcripts involved in mitochondrial energy metabolism were particularly affected by loss of Tdp-43. Accordingly, we observed reduced protein synthesis and disturbed mitochondrial functions in axons of Tdp-43-depleted motoneurons. Treatment with nicotinamide rescued the axon growth defect associated with loss of Tdp-43. These results show that Tdp-43 depletion in motoneurons affects several pathways integral to axon health indicating that loss of TDP-43 function could thus make a major contribution to axonal pathomechanisms in ALS.


Assuntos
Axônios/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mitocôndrias/metabolismo , Neurônios Motores/metabolismo , Animais , Metabolismo Energético , Camundongos , Biossíntese de Proteínas , Proteinopatias TDP-43/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA