Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
BMC Cancer ; 24(1): 449, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605332

RESUMO

BACKGROUND: While surgical resection remains the primary treatment approach for symptomatic or growing meningiomas, radiotherapy represents an auspicious alternative in patients with meningiomas not safely amenable to surgery. Biopsies are often omitted in light of potential postoperative neurological deficits, resulting in a lack of histological grading and (molecular) risk stratification. In this prospective explorative biomarker study, extracellular vesicles in the bloodstream will be investigated in patients with macroscopic meningiomas to identify a biomarker for molecular risk stratification and disease monitoring. METHODS: In total, 60 patients with meningiomas and an indication of radiotherapy (RT) and macroscopic tumor on the planning MRI will be enrolled. Blood samples will be obtained before the start, during, and after radiotherapy, as well as during clinical follow-up every 6 months. Extracellular vesicles will be isolated from the blood samples, quantified and correlated with the clinical treatment response or progression. Further, nanopore sequencing-based DNA methylation profiles of plasma EV-DNA will be generated for methylation-based meningioma classification. DISCUSSION: This study will explore the dynamic of plasma EVs in meningioma patients under/after radiotherapy, with the objective of identifying potential biomarkers of (early) tumor progression. DNA methylation profiling of plasma EVs in meningioma patients may enable molecular risk stratification, facilitating a molecularly-guided target volume delineation and adjusted dose prescription during RT treatment planning.


Assuntos
Vesículas Extracelulares , Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/cirurgia , Neoplasias Meníngeas/cirurgia , Estudos Prospectivos , Biópsia Líquida , Biomarcadores , Vesículas Extracelulares/patologia
2.
Acta Neuropathol ; 136(2): 239-253, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29766299

RESUMO

Diffuse leptomeningeal glioneuronal tumors (DLGNT) represent rare CNS neoplasms which have been included in the 2016 update of the WHO classification. The wide spectrum of histopathological and radiological features can make this enigmatic tumor entity difficult to diagnose. In recent years, large-scale genomic and epigenomic analyses have afforded insight into key genetic alterations occurring in multiple types of brain tumors and provide unbiased, complementary tools to improve diagnostic accuracy. Through genome-wide DNA methylation screening of > 25,000 tumors, we discovered a molecularly distinct class comprising 30 tumors, mostly diagnosed histologically as DLGNTs. Copy-number profiles derived from the methylation arrays revealed unifying characteristics, including loss of chromosomal arm 1p in all cases. Furthermore, this molecular DLGNT class can be subdivided into two subgroups [DLGNT methylation class (MC)-1 and DLGNT methylation class (MC)-2], with all DLGNT-MC-2 additionally displaying a gain of chromosomal arm 1q. Co-deletion of 1p/19q, commonly seen in IDH-mutant oligodendroglioma, was frequently observed in DLGNT, especially in DLGNT-MC-1 cases. Both subgroups also had recurrent genetic alterations leading to an aberrant MAPK/ERK pathway, with KIAA1549:BRAF fusion being the most frequent event. Other alterations included fusions of NTRK1/2/3 and TRIM33:RAF1, adding up to an MAPK/ERK pathway activation identified in 80% of cases. In the DLGNT-MC-1 group, age at diagnosis was significantly lower (median 5 vs 14 years, p < 0.01) and clinical course less aggressive (5-year OS 100, vs 43% in DLGNT-MC-2). Our study proposes an additional molecular layer to the current histopathological classification of DLGNT, of particular use for cases without typical morphological or radiological characteristics, such as diffuse growth and radiologic leptomeningeal dissemination. Recurrent 1p deletion and MAPK/ERK pathway activation represent diagnostic biomarkers and therapeutic targets, respectively-laying the foundation for future clinical trials with, e.g., MEK inhibitors that may improve the clinical outcome of patients with DLGNT.


Assuntos
Neoplasias Meníngeas/classificação , Neoplasias Meníngeas/genética , Oligodendroglioma/classificação , Oligodendroglioma/genética , Adolescente , Adulto , Neoplasias do Sistema Nervoso Central/diagnóstico por imagem , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/patologia , Criança , Pré-Escolar , Variações do Número de Cópias de DNA/genética , Metilação de DNA/genética , Feminino , Testes Genéticos , Humanos , Estimativa de Kaplan-Meier , Imageamento por Ressonância Magnética , Masculino , Neoplasias Meníngeas/diagnóstico por imagem , Neoplasias Meníngeas/patologia , Pessoa de Meia-Idade , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Oligodendroglioma/diagnóstico por imagem , Oligodendroglioma/patologia , Transdução de Sinais/genética , Transcriptoma , Adulto Jovem
4.
Neuro Oncol ; 26(4): 701-712, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38079455

RESUMO

BACKGROUND: Novel radiotherapeutic modalities using carbon ions provide an increased relative biological effectiveness (RBE) compared to photons, delivering a higher biological dose while reducing radiation exposure for adjacent organs. This prospective phase 2 trial investigated bimodal radiotherapy using photons with carbon-ion (C12)-boost in patients with WHO grade 2 meningiomas following subtotal resection (Simpson grade 4 or 5). METHODS: A total of 33 patients were enrolled from July 2012 until July 2020. The study treatment comprised a C12-boost (18 Gy [RBE] in 6 fractions) applied to the macroscopic tumor in combination with photon radiotherapy (50 Gy in 25 fractions). The primary endpoint was the 3-year progression-free survival (PFS), and the secondary endpoints included overall survival, safety and treatment toxicities. RESULTS: With a median follow-up of 42 months, the 3-year estimates of PFS, local PFS and overall survival were 80.3%, 86.7%, and 89.8%, respectively. Radiation-induced contrast enhancement (RICE) was encountered in 45%, particularly in patients with periventricularly located meningiomas. Patients exhibiting RICE were mostly either asymptomatic (40%) or presented immediate neurological and radiological improvement (47%) after the administration of corticosteroids or bevacizumab in case of radiation necrosis (3/33). Treatment-associated complications occurred in 1 patient with radiation necrosis who died due to postoperative complications after resection of radiation necrosis. The study was prematurely terminated after recruiting 33 of the planned 40 patients. CONCLUSIONS: Our study demonstrates a bimodal approach utilizing photons with C12-boost may achieve a superior local PFS to conventional photon RT, but must be balanced against the potential risks of toxicities.


Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/radioterapia , Meningioma/cirurgia , Meningioma/patologia , Estudos Prospectivos , Carbono/uso terapêutico , Íons/uso terapêutico , Neoplasias Meníngeas/radioterapia , Neoplasias Meníngeas/cirurgia , Necrose/tratamento farmacológico , Organização Mundial da Saúde
5.
Neurooncol Adv ; 5(1): vdad059, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293256

RESUMO

Background: The current World Health Organization (WHO) classification of brain tumors distinguishes 3 malignancy grades in meningiomas, with increasing risk of recurrence from CNS WHO grades 1 to 3. Radiotherapy is recommended by current EANO guidelines for patients not safely amenable to surgery or after incomplete resection in higher grades. Despite adequately predicting recurrence probability for the majority of CNS WHO grade 2 meningioma patients, a considerable subset of patients demonstrates an unexpectedly early tumor recurrence following radiotherapy. Methods: A retrospective cohort of 44 patients with CNS WHO grade 2 meningiomas were stratified into 3 risk groups (low, intermediate, and high) using an integrated morphological, CNV- and methylation family-based classification. Local progression-free survival (lPFS) following radiotherapy (RT) was analyzed and total dose of radiation was correlated with survival outcome. Radiotherapy treatment plans were correlated with follow-up images to characterize the pattern of relapse. Treatment toxicities were further assessed. Results: Risk stratification of CNS WHO grade 2 meningioma into integrated risk groups demonstrated a significant difference in 3-year lPFS following radiotherapy between the molecular low- and high-risk groups. Recurrence pattern analysis revealed that 87.5 % of initial relapses occurred within the RT planning target volume or resection cavity. Conclusions: Integrated risk scoring can identify CNS WHO grade 2 meningioma patients at risk or relapse and dissemination following radiotherapy. Therapeutic management of CNS WHO grade 2 meningiomas and future clinical trials should be adjusted according to the molecular risk-groups, and not rely on conventional CNS WHO grading alone.

6.
Neuro Oncol ; 25(10): 1895-1909, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37534924

RESUMO

BACKGROUND: Distinguishing the cellular origins of childhood brain tumors is key for understanding tumor initiation and identifying lineage-restricted, tumor-specific therapeutic targets. Previous strategies to map the cell-of-origin typically involved comparing human tumors to murine embryonal tissues, which is potentially limited due to species-specific differences. The aim of this study was to unravel the cellular origins of the 3 most common pediatric brain tumors, ependymoma, pilocytic astrocytoma, and medulloblastoma, using a developing human cerebellar atlas. METHODS: We used a single-nucleus atlas of the normal developing human cerebellum consisting of 176 645 cells as a reference for an in-depth comparison to 4416 bulk and single-cell transcriptome tumor datasets, using gene set variation analysis, correlation, and single-cell matching techniques. RESULTS: We find that the astroglial cerebellar lineage is potentially the origin for posterior fossa ependymomas. We propose that infratentorial pilocytic astrocytomas originate from the oligodendrocyte lineage and MHC II genes are specifically enriched in these tumors. We confirm that SHH and Group 3/4 medulloblastomas originate from the granule cell and unipolar brush cell lineages. Radiation-induced gliomas stem from cerebellar glial lineages and demonstrate distinct origins from the primary medulloblastoma. We identify tumor genes that are expressed in the cerebellar lineage of origin, and genes that are tumor specific; both gene sets represent promising therapeutic targets for future study. CONCLUSION: Based on our results, individual cells within a tumor may resemble different cell types along a restricted developmental lineage. Therefore, we suggest that tumors can arise from multiple cellular states along the cerebellar "lineage of origin."


Assuntos
Astrocitoma , Neoplasias Encefálicas , Neoplasias Cerebelares , Ependimoma , Glioma , Meduloblastoma , Criança , Humanos , Animais , Camundongos , Meduloblastoma/genética , Meduloblastoma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioma/patologia , Astrocitoma/genética , Ependimoma/genética , Ependimoma/patologia , Cerebelo/patologia , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia
7.
Nat Commun ; 12(1): 5530, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34545083

RESUMO

Long-term complications such as radiation-induced second malignancies occur in a subset of patients following radiation-therapy, particularly relevant in pediatric patients due to the long follow-up period in case of survival. Radiation-induced gliomas (RIGs) have been reported in patients after treatment with cranial irradiation for various primary malignancies such as acute lymphoblastic leukemia (ALL) and medulloblastoma (MB). We perform comprehensive (epi-) genetic and expression profiling of RIGs arising after cranial irradiation for MB (n = 23) and ALL (n = 9). Our study reveals a unifying molecular signature for the majority of RIGs, with recurrent PDGFRA amplification and loss of CDKN2A/B and an absence of somatic hotspot mutations in genes encoding histone 3 variants or IDH1/2, uncovering diagnostic markers and potentially actionable targets.


Assuntos
Inibidor de Quinase Dependente de Ciclina p15/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Amplificação de Genes , Glioma/genética , Recidiva Local de Neoplasia/patologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Adolescente , Adulto , Criança , Deleção Cromossômica , Análise por Conglomerados , Metilação de DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Rearranjo Gênico/genética , Genoma Humano , Glioma/patologia , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Radiação , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transcrição Gênica , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA