Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 22(7): 1848-1866, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38391124

RESUMO

Although the regulatory mechanisms of dark and light-induced plant morphogenesis have been broadly investigated, the biological process in peanuts has not been systematically explored on single-cell resolution. Herein, 10 cell clusters were characterized using scRNA-seq-identified marker genes, based on 13 409 and 11 296 single cells from 1-week-old peanut seedling leaves grown under dark and light conditions. 6104 genes and 50 transcription factors (TFs) displayed significant expression patterns in distinct cell clusters, which provided gene resources for profiling dark/light-induced candidate genes. Further pseudo-time trajectory and cell cycle evidence supported that dark repressed the cell division and perturbed normal cell cycle, especially the PORA abundances correlated with 11 TFs highly enriched in mesophyll to restrict the chlorophyllide synthesis. Additionally, light repressed the epidermis cell developmental trajectory extending by inhibiting the growth hormone pathway, and 21 TFs probably contributed to the different genes transcriptional dynamic. Eventually, peanut AHL17 was identified from the profile of differentially expressed TFs, which encoded protein located in the nucleus promoted leaf epidermal cell enlargement when ectopically overexpressed in Arabidopsis through the regulatory phytohormone pathway. Overall, our study presents the different gene atlases in peanut etiolated and green seedlings, providing novel biological insights to elucidate light-induced leaf cell development at the single-cell level.


Assuntos
Arachis , Regulação da Expressão Gênica de Plantas , Luz , Folhas de Planta , Plântula , Arachis/genética , Arachis/metabolismo , Arachis/crescimento & desenvolvimento , Arachis/efeitos da radiação , Folhas de Planta/genética , Folhas de Planta/efeitos da radiação , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Plântula/genética , Plântula/efeitos da radiação , Plântula/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Escuridão , Perfilação da Expressão Gênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise da Expressão Gênica de Célula Única
2.
Plant Dis ; 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764344

RESUMO

Wurfbainia villosa var. villosa is a traditional Chinese herbal medicine under the family Zingiberaceae, and its ripe fruits (called Fructus Amomi) are widely used clinically for the treatment of gastrointestinal disorders (Yang et al. 2023; Chen et al. 2023). In September 2023, plants of W. villosa var. villosa exhibited anthracnose-like symptoms on leaf with a disease incidence of 35% (n = 100 investigated plants) in an approximately 90 m2 field in Guangning, China (N23°42'51.70″, E112°26'35.75″). Light yellowish-green spots (~2 mm diameter) initially appeared on the infected leaves, gradually formed sub-circular or irregular spots, then fused and expanded, resulting in wilting of the leaves. To identify the causal agent, 10 symptomatic leaves were collected and transferred to the laboratory. The symptomatic leaf samples were surface sterilized in 0.5% NaClO for 2 min, and in 70% ethanol for 30 s, then washed three times with sterile water and air-dried on sterile filter paper. The leaf tissues were placed on potato dextrose agar (PDA) medium containing 100 µg mL-1 of ampicillin (Sigma-Aldrich, St. Louis, MO) and incubated for 7 days at 28°C in darkness. Nine isolates with similar colony morphology were isolated from the 10 plated leaves. Three representative isolates (GNAF03, GNAF06, GNAF09 with approximately 3.5 cm in diameter after 3 days of incubation) appeared gray to dark brown with dense aerial hyphae at the front and gray to black colonies on the reverse of the plates. Conidia were cylindrical and measured 21.2 to 29.3 µm long × 7.1 to 9.6 µm wide (n = 50). Appressoria were formed by the tips of germ tubes or hyphae and were brown, ellipsoid, thick-walled, and smooth-margined, measuring 10.2 to 12.3 µm long × 6.4 to 8.2 µm wide (n = 50). Morphologically, the fungal isolates resembled Colletotrichum sp. (Weir et al. 2012). For molecular analysis, genomic DNA was extracted from fresh mycelia of the three isolates, and the primers ACT-512F/ACT-783R, CL1/CL2A, GDF/GDR, and ITS1/ITS4 were used to amplify partial regions of rDNA-ITS, actin (ACT), calmodulin (CAL), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) regions, respectively (Weir et al. 2012). The resulting sequences with more than 99% nucleotide identity to C. gloeosporioides were submitted to GenBank (accession numbers PP552725, PP552726, and OR827444 for ACT; PP552727, PP552728, and OR827443 for CAL; PP552729, PP552730, and OR827445 for GAPDH; PP549996, PP549999, and OR841394 for ITS). A phylogenetic tree was generated by the maximum likelihood method using the concatenated sequences of ACT, CAL, GADPH, and ITS by Polysuite software (Damm et al. 2020). Based on morphological and molecular analysis, the three isolates were characterized as C. gloeosporioides. The pathogenicity of the GNAF09 isolate was assessed on W. villosa var. villosa seedling leaves inoculated by spraying with 40 µL of conidial suspension at 106 conidia mL-1 or wounded with a sterile toothpick then inoculated with mycelial agar plugs (5 mm diameter). Control leaves were inoculated with 40 µL of sterile distilled water or agar plugs without mycelia. The inoculated plants were placed in a humid chamber at 28°C with 80% humidity and a 12 h light-dark photoperiod. Symptoms similar to those seen on naturally infected leaves were observed on all inoculated leaves after 7 days inoculation. Re-isolation was performed from 80% of the inoculated leaves and isolates were confirmed as C. gloeosporioides morphologically, confirming Koch's postulates, and by sequencing the ACT, CAL, GADPH, and ITS regions. The control groups remained asymptomatic. In previous studies, C. gloeosporioides has also caused anthracnose on Chinese medicinal plants, including Baishao (Radix paeoniae alba) (Zhang et al. 2017) and Rubia cordifolia L. (Tang et al. 2020). To our knowledge, this is the first report of C. gloeosporioides causing anthracnose on W. villosa var. villosa in China. The results of our report serve as valuable references for further research on this disease.

3.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834682

RESUMO

Silicon (Si) has been shown to promote peanut growth and yield, but whether Si can enhance the resistance against peanut bacterial wilt (PBW) caused by Ralstonia solanacearum, identified as a soil-borne pathogen, is still unclear. A question regarding whether Si enhances the resistance of PBW is still unclear. Here, an in vitro R. solanacearum inoculation experiment was conducted to study the effects of Si application on the disease severity and phenotype of peanuts, as well as the microbial ecology of the rhizosphere. Results revealed that Si treatment significantly reduced the disease rate, with a decrement PBW severity of 37.50% as compared to non-Si treatment. The soil available Si (ASi) significantly increased by 13.62-44.87%, and catalase activity improved by 3.01-3.10%, which displayed obvious discrimination between non-Si and Si treatments. Furthermore, the rhizosphere soil bacterial community structures and metabolite profiles dramatically changed under Si treatment. Three significantly changed bacterial taxa were observed, which showed significant abundance under Si treatment, whereas the genus Ralstonia genus was significantly suppressed by Si. Similarly, nine differential metabolites were identified to involve into unsaturated fatty acids via a biosynthesis pathway. Significant correlations were also displayed between soil physiochemical properties and enzymes, the bacterial community, and the differential metabolites by pairwise comparisons. Overall, this study reports that Si application mediated the evolution of soil physicochemical properties, the bacterial community, and metabolite profiles in the soil rhizosphere, which significantly affects the colonization of the Ralstonia genus and provides a new theoretical basis for Si application in PBW prevention.


Assuntos
Arachis , Ralstonia solanacearum , Arachis/genética , Ralstonia solanacearum/metabolismo , Silício/metabolismo , Solo/química , Rizosfera , Bactérias/metabolismo , Doenças das Plantas/microbiologia
4.
Ecotoxicol Environ Saf ; 214: 112119, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33714137

RESUMO

Rice cultivation under cadmium (Cd) contaminated soil often results in reduced growth with excess grain Cd concentrations. A pot experiment was conducted to assess the potential of ultrasonic seed treatment to alleviate Cd stress in rice. Seeds of two aromatic rice cultivars i.e., Xiangyaxiangzhan and Meixiangzhan 2 and two non-aromatic rice cultivars i.e., Huahang 31 and Guangyan 1 were exposed to ultrasonic waves for 1.5 min in 20-40 KHz mixing frequency. The experimental treatments were comprised of untreated seeds (U0) and ultrasonic treated seeds (U1) transplanted in un-contaminated soil (H0) and Cd-contaminated soil (H1). Results revealed that Cd contents and Cd accumulation in grain in U1 were 33.33-42.31% and 12.86-57.58% lower than U0 for fragrant rice cultivars under H1. Meanwhile, biomass production was higher in U1 than U0 under H0 and better yield was assessed in U1 for all cultivars under H1. The activity of peroxidase (POD) in flag leaves was increased by 8.28-115.65% for all cultivars while malondialdehyde (MDA) contents were significantly decreased in U1 compared with U0 under H0. Conclusively, ultrasonic treatment modulated Cd distribution and accumulation in different parts while improved physiological performance as well as yield and grain quality of rice under Cd contaminated conditions.


Assuntos
Cádmio/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Poluentes do Solo/metabolismo , Ondas Ultrassônicas , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Malondialdeído/metabolismo , Peroxidases/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Sementes/crescimento & desenvolvimento
5.
Adv Biol (Weinh) ; 8(1): e2300410, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37828417

RESUMO

The peanut is an important worldwide cash-crop for edible oil and protein. However, the kinetic mechanisms that determine gene expression and chromatin accessibility during leaf development in peanut represented allotetraploid leguminous crops are poorly understood at single-cell resolution. Here, a single-nucleus atlas of peanut leaves is developed by simultaneously profiling the transcriptome and chromatin accessibility in the same individual-cell using fluorescence-activated sorted single-nuclei. In total, 5930 cells with 50 890 expressed genes are classified into 18 cell-clusters, and 5315 chromatin fragments are enriched with 26 083 target genes in the chromatin accessible landscape. The developmental trajectory analysis reveals the involvement of the ethylene-AP2 module in leaf cell differentiation, and cell-cycle analysis demonstrated that genome replication featured in distinct cell-types with circadian rhythms transcription factors (TFs). Furthermore, dual-omics illustrates that the fatty acid pathway modulates epidermal-guard cells differentiation and providescritical TFs interaction networks for understanding mesophyll development, and the cytokinin module (LHY/LOG) that regulates vascular growth. Additionally, an AT-hook protein AhAHL11 is identified that promotes leaf area expansion by modulating the auxin content increase. In summary, the simultaneous profiling of transcription and chromatin accessibility landscapes using snRNA/ATAC-seq provides novel biological insights into the dynamic processes of peanut leaf cell development at the cellular level.


Assuntos
Fabaceae , Transcriptoma , Arachis/genética , Arachis/metabolismo , Cromatina/genética , Cromatina/metabolismo , Fabaceae/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo
6.
Nat Genet ; 56(3): 530-540, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38378864

RESUMO

Peanut (Arachis hypogaea L.) is an important allotetraploid oil and food legume crop. China is one of the world's largest peanut producers and consumers. However, genomic variations underlying the migration and divergence of peanuts in China remain unclear. Here we reported a genome-wide variation map based on the resequencing of 390 peanut accessions, suggesting that peanuts might have been introduced into southern and northern China separately, forming two cultivation centers. Selective sweep analysis highlights asymmetric selection between the two subgenomes during peanut improvement. A classical pedigree from South China offers a context for the examination of the impact of artificial selection on peanut genome. Genome-wide association studies identified 22,309 significant associations with 28 agronomic traits, including candidate genes for plant architecture and oil biosynthesis. Our findings shed light on peanut migration and diversity in China and provide valuable genomic resources for peanut improvement.


Assuntos
Arachis , Estudo de Associação Genômica Ampla , Arachis/genética , Mapeamento Cromossômico , Fenótipo , Genômica , Genoma de Planta/genética
7.
Sci Total Environ ; 915: 170112, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38232827

RESUMO

Peanut bacterial wilt (PBW) caused by the pathogen Ralstonia solanacearum severely affects the growth and yield potential of peanut crop. In this study, we synthesized silica nanoparticles (SiO2 NPs), a prospective efficient management approach to control PBW, and conducted a hydroponic experiment to investigate the effects of different SiO2 NPs treatments (i.e., 0, 100, and 500 mg L-1 as NP0, NP100, and NP500, respectively) on promoting plant growth and resistance to R. solanacearum. Results indicated that the disease indices of NP100 and NP500 decreased by 51.5 % and 55.4 % as compared with NP0 under R. solanacearum inoculation, respectively, while the fresh and dry weights and shoot length of NP100 and NP500 increased by 7.62-42.05 %, 9.45-32.06 %, and 2.37-17.83 %, respectively. Furthermore, SiO2 NPs induced an improvement in physio-biochemical enzymes (superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, and lipoxygenase) which eliminated the excess production of hydrogen peroxide, superoxide anions, and malondialdehyde to alleviate PBW stress. Notably, the targeted metabolomic analysis indicated that SiO2 NPs enhanced salicylic acid (SA) contents, which involved the induction of systemic acquired resistance (SAR). Moreover, the transcriptomic analysis revealed that SiO2 NPs modulated the expression of multiple transcription factors (TFs) involved in the hormone pathway, such as AHLs, and the identification of hormone pathways related to plant defense responses, such as the SA pathway, which activated SA-dependent defense mechanisms. Meanwhile, the up-regulated expression of the SA-metabolism gene, salicylate carboxymethyltransferase (SAMT), initiated SAR to promote PBW resistance. Overall, our findings revealed that SiO2 NPs, functioning as a plant elicitor, could effectively modulate physiological enzyme activities and enhance SA contents through the regulation of SA-metabolism genes to confer the PBW resistance in peanuts, which highlighted the potential of SiO2 NPs for sustainable agricultural practices.


Assuntos
Arachis , Dióxido de Silício , Arachis/metabolismo , Estudos Prospectivos , Plantas/metabolismo , Ácido Salicílico , Hormônios , Doenças das Plantas/microbiologia
8.
J Agric Food Chem ; 71(47): 18443-18453, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37975831

RESUMO

2-Acetyl-1-pyrroline (2-AP) is a fragrance compound and flavor in fragrant rice whose precursors are generally glutamate (Glu) and proline (Pro). Our previous study revealed that exogenous Glu enhanced the arsenic (As) tolerance in fragrant rice by improving the ascorbic acid-glutathione cycle and the Pro content in roots. However, less is known about how Glu is involved in 2-AP biosynthesis in fragrant rice under As stress. Herein, a hydroponic experiment of L-Glu seed priming with 0, 100, and 500 µM l-glutamic acid solutions was conducted with two fragrant rice varieties. After that, the 10-day-old seedlings were cultured under 0 and 100 µM arsenite stress for 10 d. Results showed that the 2-AP and Pro contents were increased by 18-30% and 21-78% under As100 µM-Glu100 µM treatment in comparison to the control As100 µM to Glu0 µM, while the activities of pyrroline-5-carboxylate synthetase (P5CS) and proline dehydrogenase (ProDH) were increased by 19-46% and 3-19%, respectively. Furthermore, the 2-AP, Pro contents, and P5CS activity were correlated positively. Correspondingly, a significant abundance of differential expressed metabolites (18) and differential expressed genes (26) was observed in amino acid metabolism and glutathione metabolism pathways. In addition, several essential genes were verified and grouped into the pathways of glutathione metabolism, proline, and arginine metabolism with antioxidant defense system to comodulate 2-AP biosynthesis and stress detoxification. Therefore, the Glu seed priming treatment had a positive impact on the 2-AP biosynthesis of fragrant rice under 100 µM arsenite toxicity.


Assuntos
Arsenitos , Oryza , Ácido Glutâmico/metabolismo , Oryza/química , Plântula/genética , Plântula/metabolismo , Odorantes , Arsenitos/metabolismo , Sementes/metabolismo , Prolina/metabolismo , Glutationa/metabolismo
9.
Cells ; 12(18)2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37759528

RESUMO

Fatty Acid Desaturase 2 (FAD2) controls the conversion of oleic acids into linoleic acids. Mutations in FAD2 not only increase the high-oleic content, but also repress the leaf growth. However, the mechanism by which FAD2 regulates the growth pathway has not been elucidated in peanut leaves with single-cell resolution. In this study, we isolated fad2 mutant leaf protoplast cells to perform single-cell RNA sequencing. Approximately 24,988 individual cells with 10,249 expressed genes were classified into five major cell types. A comparative analysis of 3495 differentially expressed genes (DEGs) in distinct cell types demonstrated that fad2 inhibited the expression of the cytokinin synthesis gene LOG in vascular cells, thereby repressing leaf growth. Further, pseudo-time trajectory analysis indicated that fad2 repressed leaf cell differentiation, and cell-cycle evidence displayed that fad2 perturbed the normal cell cycle to induce the majority of cells to drop into the S phase. Additionally, important transcription factors were filtered from the DEG profiles that connected the network involved in high-oleic acid accumulation (WRKY6), activated the hormone pathway (WRKY23, ERF109), and potentially regulated leaf growth (ERF6, MYB102, WRKY30). Collectively, our study describes different gene atlases in high-oleic and normal peanut seedling leaves, providing novel biological insights to elucidate the molecular mechanism of the high-oleic peanut-associated agronomic trait at the single-cell level.


Assuntos
Arachis , Ácidos Graxos Dessaturases , Arachis/genética , Arachis/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Análise da Expressão Gênica de Célula Única , Mutação/genética , Ácido Oleico/metabolismo
10.
Front Plant Sci ; 13: 893278, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35592563

RESUMO

The far-red-impaired response 1 (FAR1) transcription family were initially identified as important factors for phytochrome A (phyA)-mediated far-red light signaling in Arabidopsis; they play crucial roles in controlling the growth and development of plants. The reported reference genome sequences of Arachis, including A. duranensis, A. ipaensis, A. monticola, and A. hypogaea, and its related species Glycine max provide an opportunity to systematically perform a genome-wide identification of FAR1 homologous genes and investigate expression patterns of these members in peanut species. Here, a total of 650 FAR1 genes were identified from four Aarchis and its closely related species G. max. Of the studied species, A. hypogaea contained the most (246) AhFAR1 genes, which can be classified into three subgroups based on phylogenic relationships. The synonymous (Ks) and non-synonymous (Ka) substitution rates, phylogenetic relationship and synteny analysis of the FAR1 family provided deep insight into polyploidization, evolution and domestication of peanut AhFAR1 genes. The transcriptome data showed that the AhFAR1 genes exhibited distinct tissue- and stage-specific expression patterns in peanut. Three candidate genes including Ahy_A10g049543, Ahy_A06g026579, and Ahy_A10g048401, specifically expressed in peg and pod, might participate in pod development in the peanut. The quantitative real-time PCR (qRT-PCR) analyses confirmed that the three selected genes were highly and specifically expressed in the peg and pod. This study systematically analyzed gene structure, evolutionary characteristics and expression patterns of FAR1 gene family, which will provide a foundation for the study of genetic and biological function in the future.

11.
Front Microbiol ; 12: 696117, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35002988

RESUMO

Sugarcane smut is a significant sugarcane disease caused by Sporisorium scitamineum and is a large threat to the sugar industry in China and the world. Accordingly, it is important to study the pathogenic mechanism by which this disease occurs to identify effective prevention and control strategies. Gene SsCI72380, which encodes cytochrome P450 sterol 14 alpha-demethylase (CYP51), was screened out from the transcriptome of S. scitamineum. In this study, the functions of gene SsCI72380 were identified via the knockout mutants ΔSs72380+ and ΔSs72380- , which were obtained by polyethylene glycol (PEG)-mediated protoplast transformation technology, as well as the complementary mutants COM72380+ and COM72380- . The results showed that the CYP51 gene SsCI72380 played an important role in sporidial growth, sexual mating/filamentation, hyphae growth, and pathogenicity in S. scitamineum. Gene SsCI72380 may regulate the biosynthesis process of ergosterol by encoding CYP51 enzymes and then affecting the structure and function of the cell membrane. Gene SsCI72380 also played an important role in the response toward different abiotic stresses, including hyperosmotic stress, oxidative stress, and cell wall stress, by regulating the permeability of the cell membrane. In addition, gene SsCI72380 is a new type of pathogenic gene from S. scitamineum that enhances the pathogenicity of S. scitamineum.

12.
Front Microbiol ; 12: 746550, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34675909

RESUMO

Sugarcane is an important sugar crop. Sugarcane smut, caused by Sporisorium scitamineum, is a worldwide sugarcane disease with serious economic losses and lack of effective control measures. Revealing the molecular pathogenesis of S. scitamineum is very helpful to the development of effective prevention and control technology. Deubiquitinase removes ubiquitin molecules from their binding substrates and participates in a variety of physiological activities in eukaryotes. Based on the transcriptome sequencing data of two isolates (Ss16 and Ss47) of S. scitamineum with different pathogenicities, SsCI33130, a gene encoding an OTU1-deubiquitin enzyme, was identified. The positive knockout mutants and complementary mutants of the SsCI33130 gene were successfully obtained through polyethylene glycol-mediated protoplast transformation technology. In order to study the possible function of this gene in pathogenicity, phenotypic comparison of the growth, morphology, abiotic stress, sexual mating, pathogenicity, and gene expression levels of the knockout mutants, complementary mutants, and their wild type strains were conducted. The results demonstrated that the gene had almost no effect on abiotic stress, cell wall integrity, growth, and morphology, but was related to the sexual mating and pathogenicity of S. scitamineum. The sexual mating ability and pathogenicity between the knockout mutants or between the knockout mutant and wild type were more significantly reduced than between the wild types, the complementary mutants, or the wild types and complementary mutants. The sexual mating between the knockout mutants or between the knockout mutant and wild type could be restored by the exogenous addition of small-molecule signaling substances such as 5 mM cyclic adenosine monophosphate (cAMP) or 0.02 mM tryptophol. In addition, during sexual mating, the expression levels of tryptophol and cAMP synthesis-related genes in the knockout mutant combinations were significantly lower than those in the wild type combinations, while the expression levels in the complementary mutant combinations were restored to the level of the wild type. It is speculated that the SsCI33130 gene may be involved in the development of sexual mating and pathogenicity in S. scitamineum by regulating the synthesis of the small-molecule signaling substances (cAMP or tryptophol) required during the sexual mating of S. scitamineum, thereby providing a molecular basis for the study of the pathogenic mechanisms of S. scitamineum.

13.
Front Plant Sci ; 12: 710139, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490012

RESUMO

Silicon (Si) deficiency, caused by acidic soil and rainy climate, is a major constraint for sugarcane production in southern China. Si application generally improves sugarcane growth; however, there are few studies on the relationships between enhanced plant growth, changes in rhizosphere soil, and bacterial communities. A field experiment was conducted to measure sugarcane agronomic traits, plant nutrient contents, rhizosphere soil enzyme activities and chemical properties, and the rhizosphere bacterial community diversity and structure of three predominant sugarcane varieties under two Si treatments, i.e., 0 and 200 kg of silicon dioxide (SiO2) ha-1 regarded as Si0 and Si200, respectively. Results showed that Si application substantially improved the sugarcane stalk fresh weight and Si, phosphorus (P), and potassium (K) contents comparing to Si0, and had an obvious impact on rhizosphere soil pH, available Si (ASi), available P (AP), available K (AK), total phosphorus (TP), and the activity of acid phosphatase. Furthermore, the relative abundances of Proteobacteria showed a remarkable increase in Si200, which may be the dominant group in sugarcane growth under Si application. Interestingly, the AP was noticed as a major factor that caused bacterial community structure differences between the two Si treatments according to canonical correspondence analysis (CCA). In addition, the association network analysis indicated that Si application enriched the rhizosphere bacterial network, which could be beneficial to sugarcane growth. Overall, appropriate Si application, i.e., 200 kg SiO2 ha-1 promoted sugarcane growth, changed rhizosphere soil enzyme activities and chemical properties, and bacterial community structures.

14.
Front Plant Sci ; 11: 568130, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224161

RESUMO

Sugarcane smut caused by Sporisorium scitamineum is a severe, global sugarcane disease with severe economic losses and is difficult to prevent. To explore more effective control techniques for smut, the effects and physiological mechanism of silicon (Si) on smut resistance in two smut-susceptible cultivars, ROC22 and Badila, were investigated. The results show that Si application significantly enhances smut resistance in ROC22 and Badila, and the incidence of sugarcane smut decreased by 11.57-22.58% (ROC22) and 27.75-46.67% (Badila). The incidence of smut is negatively correlated with the amount of Si applied and the Si content in sugarcane leaves, stems, and roots (highly significantly negatively correlated with stem Si content). Under S. scitamineum stress, the activities of pathogenesis-related enzymes, chitinase and ß-1,3-glucanase, secondary metabolism-related enzymes such as polyphenoloxidase (PPO) and phenylalanine-ammonia-lyase (PAL), and the contents of secondary metabolites, total soluble phenol, and lignin in sugarcane leaves treated with Si were significantly higher than those without Si (CK). The results also demonstrated that the content of malondialdehyde (MDA) and hydrogen peroxide (H2O2), the superoxide dismutase (SOD) activity of sugarcane leaves treated with Si increased in the seedling and tillering stages, and the peroxidase (POD) activity decreased in the seedling stage, which caused the accumulation of reactive oxygen species (ROS) that in turn triggered defense responses. Moreover, MDA and H2O2 levels decreased, and the activities of SOD and POD increased at the jointing stage, which was beneficial to the removal of excessive ROS. Collectively, these results suggest that Si modulates pathogenesis-related protein activity, secondary metabolism, and active oxygen metabolism of sugarcane that positively regulate resistance to smut. This study is the first to reveal the physiological mechanism of Si in improving smut resistance in sugarcane, and the results provide a theoretical basis for the development of Si fertilizers to control sugarcane smut.

15.
Sci Rep ; 10(1): 10306, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32587358

RESUMO

The effects of increasing yield and quality of virus-free chewing cane seedlings and their physiological and molecular basis were studied in this study. Results showed that compared with infected seedlings (the control), the yield of chewing cane stems grown from virus-free seedlings increased by 21.81-29.93%, stem length increased by 28.66-34.49 cm, internode length increased by 2.16-2.68 cm, the single stem weight increased by 20.10-27.68%, the reducing sugar increased by 0.91-1.15% (absolute value), and sucrose increased by - 0.06-1.33% (absolute value). The decrease in sucrose content did not reach significant level, but all other parameters were reached significant level. The chlorophyll content, photosynthetic parameters such as stomatal conductance (Gs), net photosynthetic rate (Pn) and transpiration rate (Tr), the activity of photosynthetic key enzymes ribulose-1,5-bisphosphate carboxylase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC), and gene (pepc, rbcS, and rbcL) expression levels were all greater in virus-free seedlings than infected seedlings. The content of superoxide anion (O2-) and malondialdehyde (MDA) in virus-free seedlings was lower than infected seedlings at the main growth stage. With increased development, the activities of the antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were gradually higher in virus-free seedlings than infected seedlings. Our results indicate that virus-free seedlings may improve photosynthesis efficiency and promote photosynthesis by increasing chlorophyll content, photosynthetic key enzyme activity, and the gene expression levels in leaves. By increasing the activity of antioxidant enzymes, reducing the degree of membrane lipid peroxidation, and improving the stress resistance of chewing cane, the virus-free chewing cane seedlings increased yield and quality. Our findings provide a scientific and theoretical basis for the promotion and application of virus-free chewing cane seedlings.


Assuntos
Saccharum/fisiologia , Plântula/crescimento & desenvolvimento , Clorofila/análise , Qualidade dos Alimentos , Interações Hospedeiro-Patógeno/fisiologia , Peroxidação de Lipídeos , Malondialdeído/análise , Lipídeos de Membrana/metabolismo , Vírus do Mosaico/patogenicidade , Fotossíntese , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Transpiração Vegetal , Saccharum/química , Saccharum/virologia , Plântula/química , Plântula/metabolismo , Plântula/virologia , Sacarose/análise , Superóxidos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA