Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2345-2354, 2024 May.
Artigo em Zh | MEDLINE | ID: mdl-38812135

RESUMO

To investigate the effects of plumbagin on the proliferation and apoptosis of human hepatoma Huh-7 cells and its mechanism based on the creatine kinase B(CKB)/p53 signaling pathway. Huh-7 cells were treated with plumbagin from 1 to 12 µmol·L~(-1) for cell counting kit-8(CCK-8) assay, and 1, 3, and 6 µmol·L~(-1) were determined as low, medium, and high concentrations of plumbagin for subsequent experiments. CKB gene was knocked out in Huh-7 cells by clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated proteins(Cas)-9 gene editing technology. CKB overexpression lentivirus was transfected into Huh-7 cells to up-regulate the expression of CKB. Cell proliferation and apoptosis were detected by plate cloning assay and flow cytometry. The mRNA expression of CKB was detected by quantitative real-time PCR(qRT-PCR). CKB, p53, mouse double minute 2 homolog(MDM2), B-cell lymphoma 2(Bcl-2), Bcl-2 associated X protein(Bax), and caspase-3 protein were detected by Western blot(WB). The results showed that plumbagin significantly inhibited the proliferation of Huh-7 cells and induced cell apoptosis. Compared with the control group, the apoptosis level was significantly increased in the plumbagin group, while the apoptosis level was significantly decreased in the plumbagin combined with the apoptosis inhibitor group. Plumbagin significantly down-regulated the protein expression levels of CKB, Bcl-2, and MDM2 and up-regulated the protein expression levels of p53, Bax, and caspase-3. Knockdown of the CKB gene decreased the proliferative ability of Huh-7 cells, increased the apoptotic rate, decreased the expression levels of Bcl-2 and MDM2 proteins, and increased the expression levels of p53, Bax, and caspase-3 proteins. After up-regulation of CKB expression, the proliferation ability of Huh-7 cells was enhanced, and the protein expression levels of Bcl-2 and MDM2 were elevated. The protein expression levels of p53, Bax, and caspase-3 were decreased. In addition, plumbagin reversed the effect of overexpression of CKB on the proliferation and apoptosis of Huh-7 cells. In conclusion, plumbagin significantly inhibited the proliferative ability of Huh-7 cells, and the mechanism may be related to the inhibition of CKB expression, activation of the p53 signaling pathway, and regulation of the expression of mitochondrial-associated apoptotic proteins, ultimately inducing cell apoptosis.


Assuntos
Apoptose , Carcinoma Hepatocelular , Proliferação de Células , Neoplasias Hepáticas , Naftoquinonas , Transdução de Sinais , Proteína Supressora de Tumor p53 , Humanos , Naftoquinonas/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo
2.
Cancer Res ; 80(4): 675-688, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31948940

RESUMO

Suppression of gluconeogenesis elevates glycolysis and is commonly observed in tumors derived from gluconeogenic tissues including liver and kidney, yet the definitive regulatory mechanism remains elusive. Here, we screened an array of transcription regulators and identified the enhancer of zeste homolog 2 (EZH2) as a key factor that inhibits gluconeogenesis in cancer cells. Specifically, EZH2 repressed the expression of a rate-limiting gluconeogenic enzyme fructose-1, 6-bisphosphatase 1 (FBP1) and promoted tumor growth primarily through FBP1 suppression. Furthermore, EZH2 was upregulated by genotoxins that commonly induce hepatic and renal tumorigenesis. Genotoxin treatments augmented EZH2 acetylation, leading to reduced association between EZH2 and its E3 ubiquitin ligase SMURF2. Consequently, EZH2 became less ubiquitinated and more stabilized, promoting FBP1 attenuation and tumor formation. Intriguingly, FBP1 physically interacted with EZH2, competed for EZH2 binding, and dissembled the polycomb complex. Therefore, FBP1 suppresses polycomb-initiated transcriptional responses and constitutes a double-negative feedback loop indispensable for EZH2-promoted tumorigenesis. Finally, EZH2 and FBP1 levels were inversely correlated in tumor tissues and accurately predicted patient survival. This work reveals an unexpected cross-talk between epigenetic and metabolic events, and identifies a new feedback circuitry that highlights EZH2 inhibitors as liver and kidney cancer therapeutics. SIGNIFICANCE: A novel feedback loop involving EZH2 and suppression of the gluconeogenesis enzyme FBP1 promotes hepatocellular cancer growth.See related commentary by Leithner, p. 657.


Assuntos
Gluconeogênese , Neoplasias Renais/genética , Carcinogênese , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste , Epigênese Genética , Frutose , Regulação Neoplásica da Expressão Gênica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA