Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Small ; 20(5): e2306572, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37759384

RESUMO

Cation-intercalated vanadates, which have considerable promise as the cathode for high-performance potassium metal batteries (PMBs), suffer from structural collapse upon K+ insertion and desertion. Exotic cations in the vanadate cathode may ease the collapse, yet their effect on the intrinsic cation remains speculative. Herein, a stable and dendrite-free PMB, composed of a Na+ and K+ co-intercalated vanadate (NKVO) cathode and a liquid NaK alloy anode, is presented. A series of NKVO with tuneable Na/K ratios are facilely prepared using MXene precursors, in which Na+ is testified to be immobilized upon cycling, functioning as a structural pillar. Due to stronger ionic bonding and lower Fermi level of Na+ compared to K+ , moderate Na+ intercalation could reduce K+ binding to the solvation sheath and favor K+ diffusion kinetics. As a result, the MXene-derived Na+ -pillared NKVO exhibits markedly improved specific capacities, rate performance, and cycle stability than the Na+ -free counterpart. Moreover, thermally-treated carbon paper, which imitates the microscopic structure of Chinese Xuan paper, allows high surface tension liquid NaK alloy to adhere readily, enabling dendrite-free metal anodes. By clarifying the role of foreign intercalating cations, this study may lead to a more rational design of stable and high-performance electrode materials.

2.
Angew Chem Int Ed Engl ; 63(11): e202400323, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38247990

RESUMO

Metal-organic frameworks (MOFs) have emerged as promising oxygen evolution reaction (OER) electrocatalysts. Chemically bonded MOFs on supports are desirable yet lacking in routine synthesis, as they may allow variable structural evolution and the underlying structure-activity relationship to be disclosed. Herein, direct MOF synthesis is achieved by an organic acid-etching strategy (AES). Using π-conjugated ferrocene (Fc) dicarboxylic acid as the etching agent and organic ligand, a series of MFc-MOF (M=Ni, Co, Fe, Zn) nanosheets are synthesized on the metal supports. The crystal structure is studied using X-ray diffraction and low-dose transmission electron microscopy, which is quasi-lattice-matched with that of the metal, enabling in situ MOF growth. Operando Raman and attenuated total reflectance Fourier transform infrared spectroscopy disclose that the NiFc-MOF features dynamic structural rebuilding during OER. The reconstructed one showing optimized electronic structures with an upshifted total d-band center, high M-O bonding state occupancy, and localized electrons on adsorbates indicated by density functional theory calculations, exhibits outstanding OER performance with a fairly low overpotential (130 mV at 10 mA cm-2 ) and good stability (144 h). The newly established approach for direct MOF synthesis and structural reconstruction disclosure stimulate the development of more prudent catalysts for advancing OER.

3.
Angew Chem Int Ed Engl ; 63(21): e202316991, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38520357

RESUMO

Conventional strategies for highly efficient and selective CO2 photoreduction focus on the design of catalysts and cocatalysts. In this study, we discover that hydrogen bond network breakdown in reaction system can suppress H2 evolution, thereby improving CO2 photoreduction performance. Photosensitive poly(ionic liquid)s are designed as photocatalysts owing to their strong hydrogen bonding with solvents. The hydrogen bond strength is tuned by solvent composition, thereby effectively regulating H2 evolution (from 0 to 12.6 mmol g-1 h-1). No H2 is detected after hydrogen bond network breakdown with trichloromethane or tetrachloromethane as additives. CO production rate and selectivity increase to 35.4 mmol g-1 h-1 and 98.9 % with trichloromethane, compared with 0.6 mmol g-1 h-1 and 26.2 %, respectively, without trichloromethane. Raman spectroscopy and theoretical calculations confirm that trichloromethane broke the systemic hydrogen bond network and subsequently suppressed H2 evolution. This hydrogen bond network breakdown strategy may be extended to other catalytic reactions involving H2 evolution.

4.
Angew Chem Int Ed Engl ; 63(20): e202403114, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38488787

RESUMO

The conversion of methane under ambient conditions has attracted significant attention. Although advancements have been made using active oxygen species from photo- and electro- chemical processes, challenges such as complex catalyst design, costly oxidants, and unwanted byproducts remain. This study exploits the concept of contact-electro-catalysis, initiating chemical reactions through charge exchange at a solid-liquid interface, to report a novel process for directly converting methane under ambient conditions. Utilizing the electrification of commercially available Fluorinated Ethylene Propylene (FEP) with water under ultrasound, we demonstrate how this interaction promote the activation of methane and oxygen molecules. Our results show that the yield of HCHO and CH3OH can reach 467.5 and 151.2 µmol ⋅ gcat -1, respectively. We utilized electron paramagnetic resonance (EPR) to confirm the evolution of hydroxyl radicals (⋅OH) and superoxide radicals (⋅OOH). Isotope mass spectrometry (MS) was employed to analyze the elemental origin of CH3OH, which can be further oxidized to HCHO. Additionally, we conducted density functional theory (DFT) simulations to assess the reaction energies of FEP with H2O, O2, and CH4 under these conditions. The implications of this methodology, with its potential applicability to a wider array of gas-phase catalytic reactions, underscore a significant advance in catalysis.

5.
Small ; 19(26): e2300914, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36950747

RESUMO

Previously, heat treatment was the only feasible route for tuning the crystal phases of niobium pentoxide (Nb2 O5 ). With the use of Nb2 CTx MXene precursors, the first case of phase tuning of Nb2 O5 in the low-temperature hydrothermal synthesis using sulfuric acid regulating agents is presented. By varying the amount of the agent, four pure-phase Nb2 O5 crystals and mixed phases in-between are obtained. The required amount is found to be related to the H-covered surface energy calculated based on density functional theory. Overall, MXene-derived B-phase Nb2 O5 is of particular interest due to its exceptionally high capacities as lithium-ion battery anodes, which are three times higher than the routine synthesized one. Oxygen vacancies induced by crystallographic shear would be responsible for the extraordinary performance. The proposed phase tuning strategy encourages the prudent synthesis of difficult-to-obtain crystal phases.

6.
Chemistry ; 29(10): e202203108, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36401597

RESUMO

Due to the limited resources and high cost of noble metals, boosting their catalytic activities is highly desired in the current catalysis industry. Here, we report a synergetic catalyst, combining Pd2+ and Pd0 species in a nitrogen-doped porous carbons (NPC), which shows boosted catalytic activities in hydrogenation reactions of organic nitro compounds (nitrobenzene, 4-nitrophenol, 1-nitronaphthalene and 1-nitropropane) under near ambient conditions. This synergetic catalyst NPC-[Pd] was synthesized by partial reduction of a palladium-loaded NPC. The catalytic activities and selectivity of NPC-[Pd] for hydrogenation were enhanced significantly compared with those of NPC-Pd2+ or NPC-Pd0 nanoparticles. Theoretical calculations show that H2 preferentially dissociates on Pd nanoparticles, and then organic molecules (nitrobenzene) can be captured and react with the dissociated H atom on Pd2+ sites. Similar reaction procedure also occur on Pt or Rh. Hydrogenation of different aromatic compounds with different functional groups (naphthalene, 4-nitrochlorobenzene, benzaldehyde and acetophenone) confirmed the broad excellent catalytic activity of this synergistic catalyst.

7.
Angew Chem Int Ed Engl ; 62(3): e202214143, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36401588

RESUMO

Integrating a molecular catalyst with a light harvester into a photocatalyst is an effective strategy for solar light conversion. However, it is challenging to establish a crystallized framework with well-organized connections that favour charge separation and transfer. Herein, we report the heterogenization of a Salen metal complex molecular catalyst into a rigid covalent organic framework (COF) through covalent linkage with the light-harvesting unit of pyrene for photocatalytic hydrogen evolution. The chemically conjugated bonds between the two units contribute to fast photogenerated electron transfer and thereby promote the proton reduction reaction. The Salen cobalt-based COF showed the best hydrogen evolution activity (1378 µmol g-1 h-1 ), which is superior to the previously reported nonnoble metal based COF photocatalysts. This work provides a strategy to construct atom-efficient photocatalysts by the heterogenization of molecular catalysts into covalent organic frameworks.

8.
Small ; 18(50): e2204942, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36323622

RESUMO

The electrochemical sensing of nitric oxide (NO) molecules by metal-organic framework (MOF) catalysts has been impeded, to a large extent, owing to their poor electrical conductivity and weak NO adsorption. In this work, incomplete in situ conversion of V2 CTx (T = terminal atoms) MXene to MOF is adopted, forming MOF@MXene heterostructures, which outperform MXene and MOF monocomponents toward electrochemical NO sensing. Density functional theory (DFT) calculation results indicate metal-like electronic characters for the heterostructure benefiting from the dominating contribution of the V 3d orbitals of the metallic MXene. Moreover, plane-averaged charge density difference shows substantial charge redistribution occurs at the heterointerfaces, producing a built-in field, which facilitates charge transfer. Besides, molecular mechanics-based simulated annealing calculation reveals greatly enhanced adsorption energies of NO molecules on the heterointerfaces than that on separate MOFs and MXenes. Hence, the facilitated charge transfer and preferential NO adsorption are responsible for the dramatically promoted performance toward NO sensing. The prudent design of MOF@MXene heterostructure may spur advanced electrocatalysts for electrochemical sensing.

9.
Phys Chem Chem Phys ; 24(5): 2901-2908, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35072674

RESUMO

CO2 reduction by H2 using metal-free catalysts is highly challenging. Frustrated Lewis pairs (FLPs) have been considered potential metal-free catalysts for this reaction. However, most FLPs are unstable, which limits their practical applications. In this study, a class of novel metal-free catalysts composed of K3-nHnPO4 (n = 0, 1, 2) and B(C6F5-mHm)3 (m = 0, 3, 5) were prepared and identified as effective catalysts for CO2 hydrogenation to formate by density functional theory (DFT) calculations. The simulations show that the B-H bond formation is the rate-determining step (RDS). The acid/base strength and repulsive steric interactions affect the corresponding energy barrier. Therefore, the catalytic performance can be improved by choosing a suitable Lewis acid or base. Among these catalysts, the B(C6H5)3-KH2PO4 pair, with the lowest barrier height (26.3 kcal mol-1) in RDS, is suggested as a promising metal-free catalyst for CO2 hydrogenation. This study may provide strategies for designing new LP-based metal-free catalysts.

10.
Phys Chem Chem Phys ; 24(33): 19938-19947, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35968889

RESUMO

The hydrogenation of CO2 into valuable chemical fuels reduces the atmospheric CO2 content and also has broad economic prospects. Support is essential for catalysts, but many of the reported support materials cannot meet the requirements of accessibility and durability. Herein, we theoretically designed a series of single-atom noble metals anchored on a SiO2 surface for CO2 hydrogenation using density functional theory (DFT) calculations. Through theoretical evaluation of the formation energy, hydrogen dissociation capacity, and activity of CO2 hydrogenation, we found that Ru@SiO2 is a promising candidate for CO2 hydrogenation to formic acid. The energy barrier of the rate-determining step of the entire conversion process is 23.9 kcal mol-1; thus, the reaction can occur under mild conditions. In addition, active and stable origins were revealed through electronic structure analysis. The charge of the metal atom is a good descriptor of the catalytic activity. The Pearson correlation coefficient (PCC) between metal charge and its CO2 hydrogenation barrier is 0.99. Two solvent models were also used to investigate hydrogen spillover processes and the reaction path was searched by the climbing image nudged-elastic-band (CI-NEB) method. The results indicated that the explicit solvent model could not be simplified into a few solvent molecules, leading to a large difference in the reaction paths. This work will serve as a reference for the future design of more efficient catalysts for CO2 hydrogenation.

11.
Nano Lett ; 21(22): 9691-9698, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34748344

RESUMO

Lithium-sulfur (Li-S) batteries suffer from multiple complex and often interwoven issues, such as the low electronic conductivity of sulfur and Li2S/Li2S2, shuttle effect, and sluggish electrochemical kinetics of lithium polysulfides (LiPSs). Guided by theoretical calculations, a multifunctional catalyst of isolated single-atom nickel in an optimal Ni-N5 active moiety incorporated in hollow nitrogen-doped porous carbon (Ni-N5/HNPC) is constructed and acts as an ideal host for a sulfur cathode. The host improved electrical conductivity, enhanced physical-chemical dual restricting capability toward LiPSs, and, more importantly, boosted the redox reaction kinetics by the Ni-N5 active moiety. Therefore, the Ni-N5/HNPC/S cathode exhibits superior rate performance, long-term cycling stability, and good areal capacity at high sulfur loading. This work highlights the important role of the coordination number of active centers in single-atom catalysts and provides a strategy to design a hollow nanoarchitecture with single-atom active sites for high-performance Li-S batteries.

12.
Chemistry ; 27(58): 14390-14395, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34383348

RESUMO

Imines are important intermediates in drug synthesis. Photocatalytic aerobic oxidative coupling of amines has been considered as a clean and promising way to produce imines and has attracted great attention. Herein, we designed and synthesized a novel two-dimensional porphyrin-based covalent organic framework (Por-BC-COF) which adopts an AA stacking mode with excellent crystallinity, high Brunauer-Emmett-Teller surface areas (1200 m2 g-1 ), wide light absorption range (200-1300 nm) and good stability in a variety of organic solvents. Por-BC-COF can be used as a metal-free heterogeneous photocatalyst for the photocatalytic oxidation of amines to imines under visible light and red light with a high yield (97 %). This work presents a novel and efficient COF photocatalyst in the application of light-driven organic synthesis.

13.
Environ Sci Technol ; 55(13): 9181-9188, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34043321

RESUMO

Uranium extraction from seawater is a grand challenge of mounting severity as the energy demand increases with a growing global population. An amidoxime-functionalized carboxymethyl ß-cyclodextrin/graphene aerogel (GDC) is developed for highly efficient and selective uranium extraction via a facile one-pot hydrothermal process. GDC reaches equilibrium in 1 h, and the maximum adsorption capacity calculated from Langmuir model is 654.2 mg/g. Benefiting from the chelation and complexation reaction, the obtained GDC has an excellent selectivity even when the competitive cations, anions, and oil pollutants exist. In addition, the aerogel possesses great mechanical integrity and remains intact after 10 compression cycles. Meanwhile, the GDC can be easily regenerated and maintains a high reusability of 87.3% after 10 adsorption-desorption cycles. It is worthwhile to mention that GDC exhibits an excellent extraction capacity of 19.7 mg/g within 21 days in natural seawater, which is greatly desired in uranium extraction from seawater.


Assuntos
Grafite , Urânio , beta-Ciclodextrinas , Oximas
14.
Phys Chem Chem Phys ; 23(40): 22835-22853, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34633004

RESUMO

Microporous organic polymers (MOPs) are a new class of microporous materials. Due to their high porosity, large pore volume, and large surface area, MOPs exhibit excellent performance in gas adsorption and storage, membrane separation, ion capture, heterogeneous catalysis, light energy conversion and storage, capacitance, and other fields. However, selecting high-performance materials for specific applications from thousands of candidate MOPs is a key problem. Traditional design strategies for new materials with targeted properties, including trial-and-error and relying on the experiences of domain experts, are time- and cost-consuming. With the rapid development of computation technology and theoretical chemistry, the discovery of new materials is no longer a purely experimental subject. Breaking away from the traditional trial-and-error strategy for materials discovery, materials design is emerging and gaining increasing attention. In addition, the ability to collect "big data" has greatly improved and has further stimulated the development of new methods for materials design and discovery. In this perspective, we examine how data-driven techniques combine artificial intelligence (AI) and human expertise, playing a significant role in the design of MOPs. Such analytics can significantly reduce time-to-insight and accelerate the cost-effective materials discovery, which is the goal for designing future MOPs.

15.
Angew Chem Int Ed Engl ; 60(30): 16628-16633, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34008279

RESUMO

Reported herein is asymmetric [3+2] annulation of arylnitrones with different classes of alkynes catalyzed by chiral rhodium(III) complexes, with the nitrone acting as an electrophilic directing group. Three classes of chiral indenes/indenones have been effectively constructed, depending on the nature of the substrates. The coupling system features mild reaction conditions, excellent enantioselectivity, and high atom-economy. In particular, the coupling of N-benzylnitrones and different classes of sterically hindered alkynes afforded C-C or C-N atropochiral pentatomic biaryls with a C-centered point-chirality in excellent enantio- and diastereoselectivity (45 examples, average 95.6 % ee). These chiral center and axis are disposed in a distal fashion and they are constructed via two distinct migratory insertions that are stereo-determining and are under catalyst control.

16.
Angew Chem Int Ed Engl ; 60(3): 1629-1634, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33021016

RESUMO

Capture of high-boiling-point furfural from diluted aqueous solution is a critical but challenging step in sustainable bio-refinery processes, but conventional separation methods such as distillation and liquid-liquid extraction requires prohibitive energy consumption. We report control over the microenvironment of hydrated MIL-53 and isoreticular variants with diversified functional terephthalic acid linkers for the purpose of preferential binding of furfural through delicate host-guest interactions. Methyl-bounded MIL-53 with improved binding energy in the hydrated form results in highly efficient capture ratio (ca. 98 %) in the extremely low concentration of furfural solution (0.5-3 wt %) and 100 % furfural specificity over xylose. The distinct hydrogen bonding sites and multiple Van de Wall interactions for furfural adsorption was testified by computational modeling. Furthermore, the recovery ratio of furfural reaches ca. 93 % in desorption.

17.
Chemistry ; 26(34): 7720-7726, 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32281693

RESUMO

Exploring high-performance electrocatalysts, especially non-noble metal electrocatalysts, for the oxygen evolution reaction (OER) is critical to energy storage and conversion. Herein, we report for the first time that conjugated microporous polymers (CMPs) incorporating salen can be used as OER electrocatalysts with outstanding performances. The best OER electrocatalyst (salen-CMP-Fe-3) exhibits a low Tafel slope of 63 mV dec-1 and an overpotential of 238 mV at 10 mA cm-2 . DFT and Grand Canonical Monte Carlo calculations confirmed that the significantly improved electrocatalytic properties can be attributed to the intrinsic catalytic activity of the salen moiety and the enrichment effect of the pore structures. This work demonstrates that salen-based conjugated polymers are a type of metal-coordinated porous polymer that show excellent catalyst performance.

18.
J Phys Chem A ; 124(10): 2102-2107, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-31961686

RESUMO

van der Waals (vdW) interaction has been described with a Lennard-Jones potential for decades in molecular mechanics. Here, we report a new potential function Exp-PE from quantum mechanical derivation for vdW interactions for molecular mechanic simulation. High-order ab initio calculations and experimental atomic force microscopy measurements have been used to test its feasibility, and the results suggest that this formula is simple, accurate, and transferable. This new potential function is capable of upgrading the traditional force fields especially for the applications involving vdW interactions.

19.
Angew Chem Int Ed Engl ; 59(31): 12709-12713, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32337797

RESUMO

Zero-dimensional (0D) lead-free perovskites have unique structures and optoelectronic properties. Undoped and Sb-doped all inorganic, lead-free, 0D perovskite single crystals A2 InCl5 (H2 O) (A=Rb, Cs) are presented that exhibit greatly enhanced yellow emission. To study the effect of coordination H2 O, Sb-doped A3 InCl6 (A=Rb, Cs) are also synthesized and further studied. The photoluminescence (PL) color changes from yellow to green emission. Interestingly, the photoluminescence quantum yield (PLQY) realizes a great boost from <2 % to 85-95 % through doping Sb3+ . We further explore the effect of Sb3+ dopants and the origin of bright emission by ultrafast transient absorption techniques. Furthermore, Sb-doped 0D rubidium indium chloride perovskites show excellent stability. These findings not only provide a way to design a set of new high-performance 0D lead-free perovskites, but also reveal the relationship between structure and PL properties.

20.
Angew Chem Int Ed Engl ; 59(49): 21925-21929, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32827320

RESUMO

Thermally activated delayed fluorescence (TADF) is generally observed in solid-state organic molecules or metal-organic complexes. However, TADF in all-inorganic colloidal nanocrystals (NCs) is rare. Herein, we report the first colloidal synthesis of an air-stable all-inorganic lead-free Cs2 ZrCl6 perovskite NCs. The Cs2 ZrCl6 NCs exhibit long-lived triplet excited state (138.2 µs), and feature high photoluminescence (PL) quantum efficiency (QY=60.37 %) due to TADF mechanism. The emission color can be easily tuned from blue to green by synthesizing the mixed-halide Cs2 ZrBrx Cl6-x (0≤x≤1.5) NCs. Femtosecond transient absorption and temperature dependent PL measurements are performed to clarify the emission mechanism. In addition, Bi3+ ions are successfully doped into Cs2 ZrCl6 NCs, which further extends the PL properties. This work not only develops a new lead-free halide perovskite NCs for potential optoelectronic applications, but also offers unique strategies for developing new inorganic phosphors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA