Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(19): e2313590121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38683978

RESUMO

Myokines and exosomes, originating from skeletal muscle, are shown to play a significant role in maintaining brain homeostasis. While exercise has been reported to promote muscle secretion, little is known about the effects of neuronal innervation and activity on the yield and molecular composition of biologically active molecules from muscle. As neuromuscular diseases and disabilities associated with denervation impact muscle metabolism, we hypothesize that neuronal innervation and firing may play a pivotal role in regulating secretion activities of skeletal muscles. We examined this hypothesis using an engineered neuromuscular tissue model consisting of skeletal muscles innervated by motor neurons. The innervated muscles displayed elevated expression of mRNAs encoding neurotrophic myokines, such as interleukin-6, brain-derived neurotrophic factor, and FDNC5, as well as the mRNA of peroxisome-proliferator-activated receptor γ coactivator 1α, a key regulator of muscle metabolism. Upon glutamate stimulation, the innervated muscles secreted higher levels of irisin and exosomes containing more diverse neurotrophic microRNAs than neuron-free muscles. Consequently, biological factors secreted by innervated muscles enhanced branching, axonal transport, and, ultimately, spontaneous network activities of primary hippocampal neurons in vitro. Overall, these results reveal the importance of neuronal innervation in modulating muscle-derived factors that promote neuronal function and suggest that the engineered neuromuscular tissue model holds significant promise as a platform for producing neurotrophic molecules.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Exossomos , Músculo Esquelético , Exossomos/metabolismo , Animais , Músculo Esquelético/metabolismo , Músculo Esquelético/inervação , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Camundongos , Fibronectinas/metabolismo , Neurônios Motores/metabolismo , Interleucina-6/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Neurônios/metabolismo , Fatores de Crescimento Neural/metabolismo , Miocinas
2.
Small ; : e2402452, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809080

RESUMO

Triboelectric nanogenerator (TENG) represents an effective approach for the conversion of mechanical energy into electrical energy and has been explored to combine multiple technologies in past years. Self-powered sensors are not only free from the constraints of mechanical energy in the environment but also capable of efficiently harvesting ambient energy to sustain continuous operation. In this review, the remarkable development of TENG-based human body sensing achieved in recent years is presented, with a specific focus on human health sensing solutions, such as body motion and physiological signal detection. The movements originating from different parts of the body, such as body, touch, sound, and eyes, are systematically classified, and a thorough review of sensor structures and materials is conducted. Physiological signal sensors are categorized into non-implantable and implantable biomedical sensors for discussion. Suggestions for future applications of TENG-based biomedical sensors are also indicated, highlighting the associated challenges.

3.
Molecules ; 29(12)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38930815

RESUMO

Efficient separation of CH4 from N2 is essential for the purification of methane from nitrogen. In order to address this problem, composite materials consisting of rod-shaped SBA-15-based UiO-66-Br2 were synthesized for the purpose of separating a CH4/N2 mixture. The materials were characterized via PXRD, N2 adsorption-desorption, SEM, TEM, FT-IR, and TGA. The adsorption isotherms of CH4 and N2 under standard pressure conditions for the composites were determined and subsequently compared. The study revealed that the composites were formed through the growth of MOF nanocrystals on the surfaces of the SBA-15 matrix. The enhancements in surface area and adsorption capacity of hybrid materials were attributed to the structural modifications resulting from the interactions between surface silanol groups and metal centers. The selectivity of the composites towards a gas mixture of CH4 and N2 was assessed utilizing the Langmuir adsorption equation. The results of the analysis revealed that the U6B2S5/SBA-15 sample exhibited the greatest selectivity for CH4/N2 adsorption compared to the other samples, with an adsorption selectivity parameter (S) of 20.06. Additional research is necessary to enhance the enrichment of methane from CH4/N2 mixtures using SBA-15-based metal-organic framework materials.

4.
Nat Commun ; 15(1): 2040, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448429

RESUMO

Metal-organic framework (MOF) glasses are an emerging class of glasses which complement traditional inorganic, organic and metallic counterparts due to their hybrid nature. Although a few zeolitic imidazolate frameworks have been made into glasses, how to melt and quench the largest subclass of MOFs, metal carboxylate frameworks, into glasses remains challenging. Here, we develop a strategy by grafting the zwitterions on the carboxylate ligands and incorporating organic acids in the framework channels to enable the glass formation. The charge delocalization of zwitterion-acid subsystem and the densely filled channels facilitate the coordination bonding mismatch and thus reduce the melting temperature. Following melt-quenching realizes the glass formation of a family of carboxylate MOFs (UiO-67, UiO-68 and DUT-5), which are usually believed to be un-meltable. Our work opens up an avenue for melt-quenching porous molecular solids into glasses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA