Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
1.
Blood ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38620079

RESUMO

Factor X (FX)-deficiency is a rare bleeding disorder manifesting a bleeding tendency caused by low FX activity levels. We aimed to explore the use of fitusiran (an investigational siRNA that silences antithrombin expression) to increase thrombin generation and the in vivo hemostatic potential under conditions of FX-deficiency. We therefore developed a novel model of inducible FX-deficiency, generating mice expressing <1% FX activity and antigen (f10low-mice). Compared to control f10WT-mice, f10low-mice had 6- and 4-fold prolonged clotting times in Prothrombin Time- and activated Partial Prothrombin Time-assays, respectively (p<0.001). Thrombin generation was severely reduced, irrespective whether tissue factor or factor XIa was used as initiator. In vivo analysis revealed near-absent thrombus formation in a laser-induced vessel injury-model. Furthermore, in two distinct bleeding models, f10low-mice displayed an increased bleeding tendency compared to f10WT-mice. In the tail-clip assay blood loss was increased from 12±16 microliter to 590±335 microliter (p<0.0001). In the saphenous vein puncture (SVP)-model, the number of clots generated was reduced from 19±5 clots/30 min for f10WT-mice to 2±2 clots/30 min (p<0.0001) for f10low-mice. In both models, bleeding was corrected upon infusion of purified FX. Treatment of f10low-mice with fitusiran (2x10 mg/kg at one-week interval) resulted in 17±6% residual antithrombin activity and increased thrombin generation (4-fold and 2-3-fold increase in endogenous thrombin potential and thrombin peak, respectively). In the SVP-model, the number of clots was increased to 8±6 clots/30 min (p=0.0029). Altogether, we demonstrate that reduction of antithrombin levels is associated with improved hemostatic activity under conditions of FX-deficiency.

2.
Blood ; 141(23): 2891-2900, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36928925

RESUMO

The lack of innovation in von Willebrand disease (VWD) originates from many factors including the complexity and heterogeneity of the disease but also from a lack of recognition of the impact of the bleeding symptoms experienced by patients with VWD. Recently, a few research initiatives aiming to move past replacement therapies using plasma-derived or recombinant von Willebrand factor (VWF) concentrates have started to emerge. Here, we report an original approach using synthetic platelet (SP) nanoparticles for the treatment of VWD type 2B (VWD-2B) and severe VWD (type 3 VWD). SP are liposomal nanoparticles decorated with peptides enabling them to concomitantly bind to collagen, VWF, and activated platelets. In vitro, using various microfluidic assays, we show the efficacy of SPs to improve thrombus formation in VWF-deficient condition (with human platelets) or using blood from mice with VWD-2B and deficient VWF (VWF-KO, ie, type 3 VWD). In vivo, using a tail-clip assay, SP treatment reduced blood loss by 35% in mice with VWD-2B and 68% in mice with VWF-KO. Additional studies using nanoparticles decorated with various combinations of peptides demonstrated that the collagen-binding peptide, although not sufficient by itself, was crucial for SP efficacy in VWD-2B; whereas all 3 peptides appeared necessary for mice with VWF-KO. Clot imaging by immunofluorescence and scanning electron microscopy revealed that SP treatment of mice with VWF-KO led to a strong clot, similar to those obtained in wild-type mice. Altogether, our results show that SP could represent an attractive therapeutic alternative for VWD, especially considering their long half-life and stability.


Assuntos
Hemostáticos , Doença de von Willebrand Tipo 3 , Doenças de von Willebrand , Humanos , Animais , Camundongos , Doenças de von Willebrand/complicações , Doenças de von Willebrand/terapia , Fator de von Willebrand/metabolismo , Plaquetas/metabolismo , Hemostáticos/uso terapêutico , Doença de von Willebrand Tipo 3/metabolismo , Modelos Animais de Doenças , Hemorragia/metabolismo
3.
Blood ; 141(12): 1457-1468, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36564031

RESUMO

von Willebrand factor (VWF) is a multimeric protein, the size of which is regulated via ADAMTS13-mediated proteolysis within the A2 domain. We aimed to isolate nanobodies distinguishing between proteolyzed and non-proteolyzed VWF, leading to the identification of a nanobody (designated KB-VWF-D3.1) targeting the A3 domain, the epitope of which overlaps the collagen-binding site. Although KB-VWF-D3.1 binds with similar efficiency to dimeric and multimeric derivatives of VWF, binding to VWF was lost upon proteolysis by ADAMTS13, suggesting that proteolysis in the A2 domain modulates exposure of its epitope in the A3 domain. We therefore used KB-VWF-D3.1 to monitor VWF degradation in plasma samples. Spiking experiments showed that a loss of 10% intact VWF could be detected using this nanobody. By comparing plasma from volunteers to that from congenital von Willebrand disease (VWD) patients, intact-VWF levels were significantly reduced for all VWD types, and most severely in VWD type 2A-group 2, in which mutations promote ADAMTS13-mediated proteolysis. Unexpectedly, we also observed increased proteolysis in some patients with VWD type 1 and VWD type 2M. A significant correlation (r = 0.51, P < .0001) between the relative amount of high-molecular weight multimers and levels of intact VWF was observed. Reduced levels of intact VWF were further found in plasmas from patients with severe aortic stenosis and patients receiving mechanical circulatory support. KB-VWF-D3.1 is thus a nanobody that detects changes in the exposure of its epitope within the collagen-binding site of the A3 domain. In view of its unique characteristics, it has the potential to be used as a diagnostic tool to investigate whether a loss of larger multimers is due to ADAMTS13-mediated proteolysis.


Assuntos
Doença de von Willebrand Tipo 2 , Doenças de von Willebrand , Humanos , Fator de von Willebrand/metabolismo , Doenças de von Willebrand/genética , Proteólise , Doença de von Willebrand Tipo 2/diagnóstico , Colágeno , Epitopos/metabolismo , Proteína ADAMTS13/metabolismo
4.
Circ Res ; 133(10): 826-841, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37883587

RESUMO

BACKGROUND: Thrombocytopenia has been consistently described in patients with extracorporeal membrane oxygenation (ECMO) and associated with poor outcome. However, the prevalence and underlying mechanisms remain largely unknown, and a device-related role of ECMO in thrombocytopenia has been hypothesized. This study aims to investigate the mechanisms underlying thrombocytopenia in ECMO patients. METHODS: In a prospective cohort of 107 ECMO patients, we investigated platelet count, functions, and glycoprotein shedding. In an ex vivo mock circulatory ECMO loop, we assessed platelet responses and VWF (von Willebrand factor)-GP Ibα (glycoprotein Ibα) interactions at low- and high-flow rates, in the presence or absence of red blood cells. The clearance of human platelets subjected or not to ex vivo perfusion was studied using an in vivo transfusion model in NOD/SCID (nonobese diabetic/severe combined Immunodeficient) mice. RESULTS: In ECMO patients, we observed a time-dependent decrease in platelet count starting 1 hour after device onset, with a mean drop of 7%, 35%, and 41% at 1, 24, and 48 hours post-ECMO initiation (P=0.00013, P<0.0001, and P<0.0001, respectively), regardless of the type of ECMO. This drop in platelet count was associated with a decrease in platelet GP Ibα expression (before: 47.8±9.1 versus 24 hours post-ECMO: 42.3±8.9 mean fluorescence intensity; P=0.002) and an increase in soluble GP Ibα plasma levels (before: 5.6±3.3 versus 24 hours post-ECMO: 10.8±4.1 µg/mL; P<0.0001). GP Ibα shedding was also observed ex vivo and was unaffected by (1) red blood cells, (2) the coagulation potential, (3) an antibody blocking VWF-GP Ibα interaction, (4) an antibody limiting VWF degradation, and (5) supraphysiological VWF plasma concentrations. In contrast, GP Ibα shedding was dependent on rheological conditions, with a 2.8-fold increase at high- versus low-flow rates. Platelets perfused at high-flow rates before being transfused to immunodeficient mice were eliminated faster in vivo with an accelerated clearance of GP Ibα-negative versus GP Ibα-positive platelets. CONCLUSIONS: ECMO-associated shear forces induce GP Ibα shedding and thrombocytopenia due to faster clearance of GP Ibα-negative platelets. Inhibiting GP Ibα shedding could represent an approach to reduce thrombocytopenia during ECMO.


Assuntos
Trombocitopenia , Fator de von Willebrand , Humanos , Animais , Camundongos , Fator de von Willebrand/metabolismo , Estudos Prospectivos , Camundongos Endogâmicos NOD , Camundongos SCID , Plaquetas/metabolismo , Trombocitopenia/terapia , Trombocitopenia/metabolismo
5.
PLoS Pathog ; 18(8): e1010798, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36007070

RESUMO

Hepatitis E virus (HEV) infection is the most common cause of acute viral hepatitis worldwide. Hepatitis E is usually asymptomatic and self-limiting but it can become chronic in immunocompromised patients and is associated with increased fulminant hepatic failure and mortality rates in pregnant women. HEV genome encodes three proteins including the ORF2 protein that is the viral capsid protein. Interestingly, HEV produces 3 isoforms of the ORF2 capsid protein which are partitioned in different subcellular compartments and perform distinct functions in the HEV lifecycle. Notably, the infectious ORF2 (ORF2i) protein is the structural component of virions, whereas the genome-free secreted and glycosylated ORF2 proteins likely act as a humoral immune decoy. Here, by using a series of ORF2 capsid protein mutants expressed in the infectious genotype 3 p6 HEV strain as well as chimeras between ORF2 and the CD4 glycoprotein, we demonstrated how an Arginine-Rich Motif (ARM) located in the ORF2 N-terminal region controls the fate and functions of ORF2 isoforms. We showed that the ARM controls ORF2 nuclear translocation likely to promote regulation of host antiviral responses. This motif also regulates the dual topology and functionality of ORF2 signal peptide, leading to the production of either cytosolic infectious ORF2i or reticular non-infectious glycosylated ORF2 forms. It serves as maturation site of glycosylated ORF2 by furin, and promotes ORF2-host cell membrane interactions. The identification of ORF2 ARM as a unique central regulator of the HEV lifecycle uncovers how viruses settle strategies to condense their genetic information and hijack cellular processes.


Assuntos
Vírus da Hepatite E , Hepatite E , Motivos de Aminoácidos , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Feminino , Glicosilação , Hepatite E/genética , Hepatite E/metabolismo , Vírus da Hepatite E/crescimento & desenvolvimento , Humanos , Gravidez
6.
Gene Ther ; 30(3-4): 245-254, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-33456057

RESUMO

Von Willebrand disease (VWD), the most common inherited bleeding disorder in humans, is caused by quantitative or qualitative defects in von Willebrand factor (VWF). VWD represents a potential target for gene therapy applications, as a single treatment could potentially result in a long-term correction of the disease. In recent years, several liver-directed gene therapy approaches have been exploited for VWD, but their efficacy was generally limited by the large size of the VWF transgene and the reduced hemostatic activity of the protein produced from hepatocytes. In this context, we aimed at developing a gene therapy strategy for gene delivery into endothelial cells, the natural site of biosynthesis of VWF. We optimized an endothelial-specific dual hybrid AAV vector, in which the large VWF cDNA was put under the control of an endothelial promoter and correctly reconstituted upon cell transduction by a combination of trans-splicing and homologous recombination mechanisms. In addition, we modified the AAV vector capsid by introducing an endothelial-targeting peptide to improve the efficiency for endothelial-directed gene transfer. This vector platform allowed the reconstitution of full-length VWF transgene both in vitro in human umbilical vein endothelial cells and in vivo in VWD mice, resulting in long-term expression of VWF.


Assuntos
Doenças de von Willebrand , Fator de von Willebrand , Animais , Humanos , Camundongos , Células Endoteliais/metabolismo , Técnicas de Transferência de Genes , Terapia Genética/métodos , Doenças de von Willebrand/genética , Doenças de von Willebrand/metabolismo , Doenças de von Willebrand/terapia , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo , Vetores Genéticos
7.
Blood ; 137(17): 2299-2306, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33662989

RESUMO

von Willebrand disease (VWD) is characterized by its heterogeneous clinical manifestation, which complicates its diagnosis and management. The clinical management of VWD has remained essentially unchanged over the last 30 years or so, using von Willebrand factor (VWF) concentrates, desmopressin, and anti-fibrinolytic agents as main tools to control bleeding. This is in contrast to hemophilia A, for which a continuous innovative path has led to novel treatment modalities. Despite current VWD management being considered effective, quality-of-life studies consistently reveal a higher than anticipated burden of VWD on patients, which is particularly true for women. Apparently, despite our perceived notion of current therapeutic efficiency, there is space for innovation with the goal of reaching superior efficacy. Developing innovative treatments for VWD is complex, especially given the heterogeneity of the disease and the multifunctional nature of VWF. In this perspective article, we describe several potential strategies that could provide the basis for future VWD treatments. These include genetic approaches, such as gene therapy using dual-vector adenoassociated virus and transcriptional silencing of mutant alleles. Furthermore, protein-based approaches to increase factor FVIII levels in VWD-type 3 or 2N patients are discussed. Finally, antibody-based options to interfere with VWF degradation (for congenital VWD-type 2A or acquired von Willebrand syndrome-type 2A) or increase endogenous VWF levels (for VWD-type 1) are presented. By highlighting these potential strategies, we hope to initiate an innovative path, which ultimately would allow us to better serve VWD patients and their specific needs.


Assuntos
Fator VIII/administração & dosagem , Mutação , Doenças de von Willebrand/terapia , Fator de von Willebrand/genética , Fator VIII/genética , Terapia Genética , Humanos , Doenças de von Willebrand/patologia
8.
Haematologica ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38058210

RESUMO

Recombinant factor VIII (rFVIII), rFVIIIFc and emicizumab are established treatment options in the management of hemophilia A. Each has its unique mode of action, which can influence thrombin generation kinetics and therefore also the kinetics of thrombin substrates. Such differences may potentially result in clots with different structural and physical properties. A starting observation of incomplete wound closure in a patient on emicizumab-prophylaxis led us employ a relevant mouse model in which we noticed that emicizumab-induced clots appeared less stable compared to FVIII-induced clots. We thus analyzed fibrin formation in vitro and in vivo. In vitro fibrin formation was faster and more abundant in the presence of emicizumab compared to rFVIII/rFVIIIFc. Furthermore, the time-interval between the initiation of fibrin formation and factor XIII activation was twice as long for emicizumab compared to rFVIII/rFVIIIFc. Scanning-electron microscopy and immunofluorescent spinning-disk confocal-microscopy of in vivo generated clots confirmed increased fibrin formation in the presence of emicizumab. Unexpectedly, we also detected a different morphology between rFVIII/rFVIIIFc- and emicizumab-induced clots. Contrary to the regular fibrin-mesh obtained with rFVIII/rFVIIIFc, fibrin-fibers appeared to be fused into large patches upon emicizumabtreatment. Moreover, fewer red blood cells were detected in regions where these fibrin patches were present. The presence of highly-dense fibrin-structures associated with a diffuse fiber-structure in emicizumab-induced clots was also observed when using superresolution imaging. We hypothesize that the modified kinetics of thrombin, fibrin and factor XIIIa generation contribute to differences in structural and physical properties between clots formed in the presence of FVIII or emicizumab.

9.
Cell Mol Life Sci ; 79(12): 615, 2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36460928

RESUMO

Although hepatitis E virus (HEV) is the major leading cause of enterically transmitted viral hepatitis worldwide, many gaps remain in the understanding of the HEV lifecycle. Notably, viral factories induced by HEV have not been documented yet, and it is currently unknown whether HEV infection leads to cellular membrane modeling as many positive-strand RNA viruses. HEV genome encodes the ORF1 replicase, the ORF2 capsid protein and the ORF3 protein involved in virion egress. Previously, we demonstrated that HEV produces different ORF2 isoforms including the virion-associated ORF2i form. Here, we generated monoclonal antibodies that specifically recognize the ORF2i form and antibodies that recognize the different ORF2 isoforms. One antibody, named P1H1 and targeting the ORF2i N-terminus, recognized delipidated HEV particles from cell culture and patient sera. Importantly, AlphaFold2 modeling demonstrated that the P1H1 epitope is exposed on HEV particles. Next, antibodies were used to probe viral factories in HEV-producing/infected cells. By confocal microscopy, we identified subcellular nugget-like structures enriched in ORF1, ORF2 and ORF3 proteins and viral RNA. Electron microscopy analyses revealed an unprecedented HEV-induced membrane network containing tubular and vesicular structures. We showed that these structures are dependent on ORF2i capsid protein assembly and ORF3 expression. An extensive colocalization study of viral proteins with subcellular markers, and silencing experiments demonstrated that these structures are derived from the endocytic recycling compartment (ERC) for which Rab11 is a central player. Hence, HEV hijacks the ERC and forms a membrane network of vesicular and tubular structures that might be the hallmark of HEV infection.


Assuntos
Vírus da Hepatite E , Humanos , Vírus da Hepatite E/genética , Compartimentos de Replicação Viral , Proteínas do Capsídeo , Transporte Biológico , Anticorpos Monoclonais
10.
Blood ; 136(6): 740-748, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32369559

RESUMO

The bispecific antibody emicizumab is increasingly used for hemophilia A treatment. However, its specificity for human factors IX and X (FIX and FX) has limited its in vivo functional analysis to primate models of acquired hemophilia. Here, we describe a novel mouse model that allows emicizumab function to be examined. Briefly, FVIII-deficient mice received IV emicizumab 24 hours before tail-clip bleeding was performed. A second infusion with human FIX and FX, administered 5 minutes before bleeding, generated consistent levels of emicizumab (0.7-19 mg/dL for 0.5-10 mg/kg doses) and of both FIX and FX (85 and 101 U/dL, respectively, after dosing at 100 U/kg). Plasma from these mice display FVIII-like activity in assays (diluted activated partial thromboplastin time and thrombin generation), similar to human samples containing emicizumab. Emicizumab doses of 1.5 mg/kg and higher significantly reduced blood loss in a tail-clip-bleeding model using FVIII-deficient mice. However, reduction was incomplete compared with mice treated with human FVIII concentrate, and no difference in efficacy between doses was observed. From this model, we deducted FVIII-like activity from emicizumab that corresponded to a dose of 4.5 U of FVIII per kilogram (ie, 9.0 U/dL). Interestingly, combined with a low FVIII dose (5 U/kg), emicizumab provided enough additive activity to allow complete bleeding arrest. This model could be useful for further in vivo analysis of emicizumab.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Fator IX/administração & dosagem , Fator X/administração & dosagem , Hemofilia A/tratamento farmacológico , Hemorragia/tratamento farmacológico , Modelos Animais , Animais , Anticorpos Biespecíficos/administração & dosagem , Anticorpos Biespecíficos/imunologia , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/imunologia , Quimioterapia Combinada , Fator IX/análise , Fator IX/imunologia , Fator VIII/administração & dosagem , Fator VIII/análise , Fator VIII/uso terapêutico , Fator X/análise , Fator X/imunologia , Fator XIa/farmacologia , Feminino , Hemofilia A/sangue , Hemofilia A/complicações , Hemofilia A/imunologia , Hemorragia/etiologia , Infusões Intravenosas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tempo de Tromboplastina Parcial , Cauda/lesões , Trombina/biossíntese
11.
Circ Res ; 127(7): e166-e183, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32588751

RESUMO

RATIONALE: Ca2+ signaling is a key and ubiquitous actor of cell organization and its modulation controls many cellular responses. SERCAs (sarco-endoplasmic reticulum Ca2+-ATPases) pump Ca2+ into internal stores that play a major role in the cytosolic Ca2+ concentration rise upon cell activation. Platelets exhibit 2 types of SERCAs, SERCA2b and SERCA3 (SERCA3 deficient mice), which may exert specific roles, yet ill-defined. We have recently shown that Ca2+ mobilization from SERCA3-dependent stores was required for full platelet activation in weak stimulation conditions. OBJECTIVE: To uncover the signaling mechanisms associated with Ca2+ mobilization from SERCA3-dependent stores leading to ADP secretion. METHODS AND RESULTS: Using platelets from wild-type or Serca3-deficient mice, we demonstrated that an early (within 5-10 s following stimulation) secretion of ADP specifically dependent on SERCA3 stored Ca2+ is exclusively mobilized by nicotinic acid adenosine dinucleotide-phosphate (NAADP): both Ca2+ mobilization from SERCA3-dependent stores and primary ADP secretion are blocked by the NAADP receptor antagonist Ned-19, and reciprocally both are stimulated by permeant NAADP. In contrast, Ca2+ mobilization from SERCA3-dependent stores and primary ADP secretion were unaffected by inhibition of the production of IP3 (inositol-1,4,5-trisphosphate) by phospholipase-C and accordingly were not stimulated by permeant IP3. CONCLUSIONS: Upon activation, an NAADP/SERCA3 Ca2+ mobilization pathway initiates an early ADP secretion, potentiating platelet activation, and a secondary wave of ADP secretion driven by both an IP3/SERCA2b-dependent Ca2+ stores pathway and the NAADP/SERCA3 pathway. This does not exclude that Ca2+ mobilized from SERCA3 stores may also enhance platelet global reactivity to agonists. Because of its modulating effect on platelet activation, this NAADP-SERCA3 pathway may be a relevant target for anti-thrombotic therapy. Graphic Abstract: A graphic abstract is available for this article.


Assuntos
Difosfato de Adenosina/sangue , Comunicação Autócrina , Plaquetas/enzimologia , Sinalização do Cálcio , NADP/análogos & derivados , Ativação Plaquetária , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/sangue , Animais , Comunicação Autócrina/efeitos dos fármacos , Plaquetas/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Humanos , Inositol 1,4,5-Trifosfato/sangue , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADP/sangue , Ativação Plaquetária/efeitos dos fármacos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Via Secretória , Trombina/farmacologia , Tromboxano A2/sangue , Fatores de Tempo
12.
Blood ; 134(19): 1632-1644, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31383642

RESUMO

Hemophilia A and B, diseases caused by the lack of factor VIII (FVIII) and factor IX (FIX) respectively, lead to insufficient thrombin production, and therefore to bleeding. New therapeutic strategies for hemophilia treatment that do not rely on clotting factor replacement, but imply the neutralization of natural anticoagulant proteins, have recently emerged. We propose an innovative approach consisting of targeting a natural and potent thrombin inhibitor, expressed by platelets, called protease nexin-1 (PN-1). By using the calibrated automated thrombin generation assay, we showed that a PN-1-neutralizing antibody could significantly shorten the thrombin burst in response to tissue factor in platelet-rich plasma (PRP) from patients with mild or moderate hemophilia. In contrast, in PRP from patients with severe hemophilia, PN-1 neutralization did not improve thrombin generation. However, after collagen-induced platelet activation, PN-1 deficiency in F8-/-mice or PN-1 blocking in patients with severe disease led to a significantly improved thrombin production in PRP, underlining the regulatory role of PN-1 released from platelet granules. In various bleeding models, F8-/-/PN-1-/- mice displayed significantly reduced blood loss and bleeding time compared with F8-/-mice. Moreover, platelet recruitment and fibrin(ogen) accumulation were significantly higher in F8-/-/PN-1-/- mice than in F8-/-mice in the ferric chloride-induced mesenteric vessel injury model. Thromboelastometry studies showed enhanced clot stability and lengthened clot lysis time in blood from F8-/-/PN-1-/- and from patients with hemophilia A incubated with a PN-1-neutralizing antibody compared with their respective controls. Our study thus provides proof of concept that PN-1 neutralization can be a novel approach for future clinical care in hemophilia.


Assuntos
Transtornos Herdados da Coagulação Sanguínea/enzimologia , Serpina E2/antagonistas & inibidores , Animais , Anticorpos Neutralizantes/farmacologia , Transtornos Herdados da Coagulação Sanguínea/complicações , Hemorragia/etiologia , Hemostasia/efeitos dos fármacos , Humanos , Camundongos , Camundongos Knockout , Ativação Plaquetária/efeitos dos fármacos
13.
Blood ; 133(16): 1778-1788, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30602618

RESUMO

Filamin A (FLNa) links the cell membrane with the cytoskeleton and is central in several cellular processes. Heterozygous mutations in the X-linked FLNA gene are associated with a large spectrum of conditions, including macrothrombocytopenia, called filaminopathies. Using an isogenic pluripotent stem cell model derived from patients, we show that the absence of the FLNa protein in megakaryocytes (MKs) leads to their incomplete maturation, particularly the inability to produce proplatelets. Reduction in proplatelet formation potential is associated with a defect in actomyosin contractility, which results from inappropriate RhoA activation. This dysregulated RhoA activation was observed when MKs were plated on fibrinogen but not on other matrices (fibronectin, vitronectin, collagen 1, and von Willebrand factor), strongly suggesting a role for FLNa/αIIbß3 interaction in the downregulation of RhoA activity. This was confirmed by experiments based on the overexpression of FLNa mutants deleted in the αIIbß3-binding domain and the RhoA-interacting domain, respectively. Finally, pharmacological inhibition of the RhoA-associated kinase ROCK1/2 restored a normal phenotype and proplatelet formation. Overall, this work suggests a new etiology for macrothrombocytopenia, in which increased RhoA activity is associated with disrupted FLNa/αIIbß3 interaction.


Assuntos
Filaminas/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Trombocitopenia/etiologia , Feminino , Fibrinogênio/metabolismo , Filaminas/genética , Humanos , Megacariócitos/química , Megacariócitos/patologia , Mutação , Ligação Proteica/fisiologia , Quinases Associadas a rho/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/metabolismo
14.
Blood ; 133(4): 366-376, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30305279

RESUMO

Von Willebrand factor (VWF) is a key player in the regulation of hemostasis by promoting recruitment of platelets to sites of vascular injury. An array of 6 C domains forms the dimeric C-terminal VWF stem. Upon shear force activation, the stem adopts an open conformation allowing the adhesion of VWF to platelets and the vessel wall. To understand the underlying molecular mechanism and associated functional perturbations in disease-related variants, knowledge of high-resolution structures and dynamics of C domains is of paramount interest. Here, we present the solution structure of the VWF C4 domain, which binds to the platelet integrin and is therefore crucial for the VWF function. In the structure, we observed 5 intra- and inter-subdomain disulfide bridges, of which 1 is unique in the C4 domain. The structure further revealed an unusually hinged 2-subdomain arrangement. The hinge is confined to a very short segment around V2547 connecting the 2 subdomains. Together with 2 nearby inter-subdomain disulfide bridges, this hinge induces slow conformational changes and positional alternations of both subdomains with respect to each other. Furthermore, the structure demonstrates that a clinical gain-of-function VWF variant (Y2561) is more likely to have an effect on the arrangement of the C4 domain with neighboring domains rather than impairing platelet integrin binding.


Assuntos
Plaquetas/metabolismo , Integrinas/metabolismo , Fator de von Willebrand/química , Fator de von Willebrand/metabolismo , Sequência de Aminoácidos , Dissulfetos/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Soluções , Relação Estrutura-Atividade
15.
Blood ; 133(4): 356-365, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30366922

RESUMO

The frequent von Willebrand factor (VWF) variant p.Phe2561Tyr is located within the C4 domain, which also harbors the platelet GPIIb/IIIa-binding RGD sequence. To investigate its potential effect on hemostasis, we genotyped 865 patients with coronary artery disease (CAD), 915 with myocardial infarction (MI), and 417 control patients (Ludwigshafen Risk and Cardiovascular Health Study) and performed functional studies of this variant. A univariate analysis of male and female carriers of the Tyr2561 allele aged 55 years or younger revealed an elevated risk for repeated MI (odds ratio, 2.53; 95% confidence interval [CI], 1.07-5.98). The odds ratio was even higher in females aged 55 years or younger, at a value of 5.93 (95% CI, 1.12-31.24). Cone and plate aggregometry showed that compared with Phe2561, Tyr2561 was associated with increased platelet aggregate size both in probands' blood and with the recombinant variants. Microfluidic assays revealed that the critical shear rate for inducing aggregate formation was decreased to 50% by Tyr2561 compared with Phe2561. Differences in C-domain circular dichroism spectra resulting from Tyr2561 suggest an increased shear sensitivity of VWF as a result of altered association of the C domains that disrupts the normal dimer interface. In summary, our data emphasize the functional effect of the VWF C4 domain for VWF-mediated platelet aggregation in a shear-dependent manner and provide the first evidence that a functional variant of VWF plays a role in arterial thromboembolism.


Assuntos
Alelos , Mutação com Ganho de Função/genética , Predisposição Genética para Doença , Infarto do Miocárdio/genética , Tirosina/genética , Fator de von Willebrand/genética , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Razão de Chances , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Ligação Proteica , Conformação Proteica , Fatores de Risco , Fator de von Willebrand/química
16.
Haematologica ; 106(3): 819-828, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32107335

RESUMO

von Willebrand factor (VWF) plays an important role in ischemic stroke. However, the exact mechanism by which VWF mediates progression of ischemic stroke brain damage is not completely understood. Using flow cytometric analysis of single cell suspensions prepared from brain tissue and immunohistochemistry, we investigated the potential inflammatory mechanisms by which VWF contributes to ischemic stroke brain damage in a mouse model of cerebral ischemia/reperfusion injury. Twenty-four hours after stroke, flow cytometric analysis of brain tissue revealed that overall white blood cell recruitment in the ipsilesional brain hemisphere of VWF KO mice was 2 times lower than WT mice. More detailed analysis showed a specific reduction of proinflammatory monocytes, neutrophils and T-cells in the ischemic brain of VWF KO mice compared to WT mice. Interestingly, histological analysis revealed a substantial number of neutrophils and T-cells still within the microcirculation of the stroke brain, potentially contributing to the no-reflow phenomenon. Specific therapeutic targeting of the VWF A1 domain in WT mice resulted in reduced immune cell numbers in the affected brain and protected mice from ischemic stroke brain damage. More specifically, recruitment of proinflammatory monocytes was reduced two-fold, neutrophil recruitment was reduced five-fold and T-cell recruitment was reduced two-fold in mice treated with a VWF A1-targeting nanobody compared to mice receiving a control nanobody. In conclusion, our data identify a potential role for VWF in the recruitment of proinflammatory monocytes, neutrophils and T-cells to the ischemic brain via a mechanism that is mediated by its A1 domain.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Trombose , Animais , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Fator de von Willebrand/genética
17.
AIDS Behav ; 25(7): 2230-2239, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33449236

RESUMO

Using a mobile research facility, we enrolled 141 opioid users from a neighborhood of Philadelphia, an urban epicenter of the opioid epidemic. Nearly all (95.6%) met DSM-5 criteria for severe opioid use disorder. The prevalence of HIV infection (8.5%) was more than seven times that found in the general population of the city. Eight of the HIV-positive participants (67.0%) reported receiving antiretroviral treatment but almost all of them had unsuppressed virus (87.5%). The majority of participants (57.4%) reported symptoms consistent with major depressive disorder. Severe economic distress (60.3%) and homelessness were common (57%). Polysubstance use was nearly universal, 72.1% had experienced multiple overdoses and prior medication for opioid use disorder (MOUD) treatment episodes (79.9%), but few currently engaged in addiction care. The prevalence, multiplicity and severity of chronic health and socioeconomic problems highlight consequences of the current opioid epidemic and underscore the urgent need to develop integrated models of treatment.


RESUMEN: Utilizando un Centro de Investigación Móvil, inscribimos a 141 usuarios de opioides del vecindario de Filadelfia, un epicentro urbano de la epidemia de opioides. Casi todos (95,6%) cumplieron con los criterios del DSM-5 para el trastorno del uso severo del consumo de opioides. La prevalencia de la infección de VIH (8,5%) fue másﹶ de 7 veces superior a las encontrada en la población general de la ciudad. Ocho de los participantes con VIH positivo (67,0%) reportaron haber recibido tratamiento antirretroviral pero casi todos tuvieron virus no suprimido (87,5%). La mayoría de los participantes (57,4%) informaron síntomas compatibles con el Desorden Depresivo Mayor. La angustia severa por lo económico (60,3%) y las personas sin hogar fueron comunes (57%). El uso de múltiples sustancias fue casi universal, el 721% había experimentado múltiples sobredosis y previos medicamentos para el tratamiento del trastorno por consumo de opioides (MOUD) (79,9%), pero muy pocos estaban comprometidos con la atención a las adicciones. La prevalencia, la multiplicidad y la seriedad de los problemas de salud crónica y los problemas socioeconómicos destacan las consecuencias de la actual epidemia de opioides y subrayan la urgente necesidad de desarrollar nuevos modelos de tratamiento integrados.


Assuntos
Buprenorfina , Transtorno Depressivo Maior , Infecções por HIV , Alcaloides Opiáceos , Transtornos Relacionados ao Uso de Opioides , Analgésicos Opioides/uso terapêutico , Buprenorfina/uso terapêutico , Depressão , Transtorno Depressivo Maior/tratamento farmacológico , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , Humanos , Alcaloides Opiáceos/uso terapêutico , Epidemia de Opioides , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Transtornos Relacionados ao Uso de Opioides/epidemiologia , Philadelphia
18.
Blood ; 132(11): 1193-1197, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30064978

RESUMO

Von Willebrand factor (VWF) modulates factor VIII (FVIII) clearance and the anti-FVIII immune response. Despite the high affinity that defines the FVIII/VWF interaction, association/dissociation kinetics dictates 2% to 5% FVIII being present as free protein. To avoid free FVIII when studying the FVIII-VWF complex in vivo, we designed a FVIII-nanobody fusion protein, with the nanobody part being directed against VWF. This fusion protein, designated FVIII-KB013bv, had a 25-fold higher affinity compared with B-domainless FVIII (BDD-FVIII) for VWF. In vitro analysis revealed full cofactor activity in 1-stage clotting and chromogenic assays (activity/antigen ratio 1.0 ± 0.3 and 1.1 ± 0.3, respectively). In vivo, FVIII-013bv displayed a twofold increased mean residence time compared with BDD-FVIII (3.0 hours vs 1.6 hours). In a tail clip-bleeding assay performed 24 hours after FVIII infusion, blood loss was significantly reduced in mice receiving FVIII-KB013bv vs BDD-FVIII (15 ± 7 µL vs 194 ± 146 µL; P = .0043). Unexpectedly, when examining anti-FVIII antibody formation in FVIII-deficient mice, the immune-response toward FVIII-KB013bv was significantly reduced compared with BDD-FVIII (1/8 vs 14/16 mice produced anti-FVIII antibodies after treatment with FVIII-KB013bv and BDD-FVIII, respectively). Our data show that a stabilized interaction between FVIII and VWF is associated with a prolonged survival of FVIII and a reduced immune response against FVIII.


Assuntos
Formação de Anticorpos/efeitos dos fármacos , Autoanticorpos , Fator VIII , Proteínas Recombinantes de Fusão , Anticorpos de Domínio Único/farmacologia , Fator de von Willebrand , Animais , Autoanticorpos/imunologia , Autoanticorpos/metabolismo , Fator VIII/imunologia , Fator VIII/farmacocinética , Fator VIII/farmacologia , Camundongos , Camundongos Mutantes , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/farmacocinética , Proteínas Recombinantes de Fusão/farmacologia , Fator de von Willebrand/imunologia , Fator de von Willebrand/metabolismo
19.
Blood ; 132(19): 2067-2077, 2018 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-30213874

RESUMO

The ephrin transmembrane receptor family of tyrosine kinases is involved in platelet function. We report the first EPHB2 variant affecting platelets in 2 siblings (P1 and P2) from a consanguineous family with recurrent bleeding and normal platelet counts. Whole-exome sequencing identified a c.2233C>T variant (missense p.R745C) of the EPHB2 gene. P1 and P2 were homozygous for this variant, while their asymptomatic parents were heterozygous. The p.R745C variant within the tyrosine kinase domain was associated with defects in platelet aggregation, αIIbß3 activation, and granule secretion induced by G-protein-coupled receptor (GPCR) agonists and convulxin, as well as in thrombus formation on collagen under flow. In contrast, clot retraction, flow-dependent platelet adhesion, and spreading on fibrinogen were only mildly affected, indicating limited effects on αIIbß3 outside-in signaling. Most importantly, Lyn, Syk, and FcRγ phosphorylation, the initial steps in glycoprotein VI (GPVI) platelet signaling were drastically impaired in the absence of platelet-platelet contact, indicating a positive role for EPHB2 in GPVI activation. Likewise platelet activation by PAR4-AP showed defective Src activation, as opposed to normal protein kinase C activity and Ca2+ mobilization. Overexpression of wild-type and R745C EPHB2 variant in RBL-2H3 (rat basophilic leukemia) cells stably expressing human GPVI confirmed that EPHB2 R745C mutation impaired EPHB2 autophosphorylation but had no effect on ephrin ligand-induced EPHB2 clustering, suggesting it did not interfere with EPHB2-ephrin-mediated cell-to-cell contact. In conclusion, this novel inherited platelet disorder affecting EPHB2 demonstrates this tyrosine kinase receptor plays an important role in platelet function through crosstalk with GPVI and GPCR signaling.


Assuntos
Plaquetas/patologia , Mutação de Sentido Incorreto , Ativação Plaquetária , Receptor EphB2/genética , Adolescente , Plaquetas/metabolismo , Plaquetas/ultraestrutura , Criança , Feminino , Humanos , Masculino , Linhagem , Adesividade Plaquetária , Agregação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Receptor EphB2/metabolismo , Transdução de Sinais , Adulto Jovem
20.
Haematologica ; 105(10): 2471-2483, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33054087

RESUMO

Blood flow profoundly varies throughout the vascular tree due to its pulsatile nature and to the complex vessel geometry. While thrombus formation has been extensively studied in vitro under steady flow, and in vivo under normal blood flow conditions, the impact of complex hemodynamics such as flow acceleration found in stenosed arteries has gained increased appreciation. We investigated the effect of flow acceleration, characterized by shear rate gradients, on the function of platelets adhering to fibrinogen, a plasma protein which plays a key role in hemostais and thrombosis. While we confirmed that under steady flow, fibrinogen only supports single platelet adhesion, we observed that under shear rate gradients, this surface becomes highly thrombogenic, supporting efficient platelet aggregation leading to occlusive thrombus formation. This shear rate gradient-driven thrombosis is biphasic with an initial step of slow platelet recruitment supported by direct plasma VWF adsorption to immobilized fibrinogen and followed by a second phase of explosive thrombosis initiated by VWF fiber formation on platelet monolayers. In vivo experiments confirmed that shear rate gradients accelerate thrombosis in a VWF-dependent manner. Together, this study characterizes a process of plasma VWF-dependent accelerated thrombosis on immobilized fibrinogen in the presence of shear rate gradients.


Assuntos
Trombose , Fator de von Willebrand , Adesivos , Plaquetas , Fibrinogênio , Humanos , Adesividade Plaquetária , Agregação Plaquetária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA