Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 189(3): 282-91, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24456467

RESUMO

RATIONALE: Sepsis is one of the leading causes of death around the world. The failure of clinical trials to treat sepsis demonstrates that the molecular mechanisms are multiple and are still insufficiently understood. OBJECTIVES: To clarify the long disputed hierarchical contribution of several central inflammatory mediators (IL-1ß, IL-18, caspase [CASP] 7, CASP1, and CASP11) in septic shock and to explore their therapeutic potential. METHODS: LPS- and tumor necrosis factor (TNF)-induced lethal shock, and cecal ligation and puncture (CLP) were performed in genetically or pharmacologically targeted mice. Body temperature and survival were monitored closely, and plasma was analyzed for several markers of cellular disintegration and inflammation. MEASUREMENTS AND MAIN RESULTS: Interestingly, deficiency of both IL-1ß and IL-18 additively prevented LPS-induced mortality. The detrimental role of IL-1ß and IL-18 was confirmed in mice subjected to a lethal dose of TNF, or to a lethal CLP procedure. Although their upstream activator, CASP1, and its amplifier, CASP11, are considered potential therapeutic targets because of their crucial involvement in endotoxin-induced toxicity, CASP11- or CASP1/11-deficient mice were not, or hardly, protected against a lethal TNF or CLP challenge. In line with our results obtained in genetically deficient mice, only the combined neutralization of IL-1 and IL-18, using the IL-1 receptor antagonist anakinra and anti-IL-18 antibodies, conferred complete protection against endotoxin-induced lethality. CONCLUSIONS: Our data point toward the therapeutic potential of neutralizing IL-1 and IL-18 simultaneously in sepsis, rather than inhibiting the upstream inflammatory caspases.


Assuntos
Anti-Inflamatórios/uso terapêutico , Autoanticorpos/uso terapêutico , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Interleucina-18/deficiência , Interleucina-1beta/deficiência , Choque Séptico/prevenção & controle , Animais , Biomarcadores/sangue , Caspase 1/sangue , Caspase 1/deficiência , Caspase 7/sangue , Caspase 7/deficiência , Caspases/sangue , Caspases/deficiência , Caspases Iniciadoras , Ceco/cirurgia , Quimioterapia Combinada , Interleucina-18/antagonistas & inibidores , Interleucina-18/sangue , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/sangue , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Choque Séptico/sangue , Choque Séptico/etiologia , Fator de Necrose Tumoral alfa
2.
J Cell Sci ; 118(Pt 3): 497-504, 2005 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-15657078

RESUMO

Previously we reported that both human TNFR1 and TNFR2 mediate TNF-induced apoptosis in the transfected rat/mouse T cell hybridoma PC60. We show here that TNFR2-mediated apoptosis in PVC60 cells can be blocked by the broad-spectrum caspase inhibitor zVAD-fmk, the caspase-8 inhibitor zIETD-fmk and by CrmA, a viral inhibitor of caspase-1 and caspase-8. This suggests an involvement of caspase-8 in TNFR2-mediated apoptosis. The upstream adaptor of caspase-8, FADD, is also involved in TNFR2-induced cell death, since transient overexpression of a dominant negative deletion mutant of FADD inhibited apoptosis induced by this receptor. TNFR2-induced apoptosis is independent of endogenous TNF or other death-inducing ligand production and subsequent activation of TNFR1 or other death receptors. Furthermore, TNFR2 stimulation does not enhance sensitivity for a subsequent TNFR1-induced apoptotic signal, as has been reported for Jurkat cells. TRAF2 downregulation, which has been proposed as the mechanism by which TNFR2 enhances TNFR1 signaling, was observed in PC60 cells, but the TNRF1 signal was not modulated. These data confirm the capacity of TNFR2 to generate an apoptotic cell death signal independent of TNFR1.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Apoptose/fisiologia , Caspases/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/fisiologia , Linfócitos T/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Apoptose/efeitos dos fármacos , Caspase 8 , Inibidores de Caspase , Sobrevivência Celular/efeitos dos fármacos , Cicloeximida/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Proteína de Domínio de Morte Associada a Fas , Humanos , Hibridomas , Camundongos , Mutação/genética , Ratos , Receptores Tipo I de Fatores de Necrose Tumoral/antagonistas & inibidores , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/fisiologia , Receptores Tipo II do Fator de Necrose Tumoral/genética , Linfócitos T/efeitos dos fármacos , Fator 2 Associado a Receptor de TNF/metabolismo , Transfecção , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA