Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 57(17): 11225-11239, 2018 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-30129361

RESUMO

We previously reported that the [RhIII(dmbpy)2Cl2]+ (dmbpy = 4,4'-dimethyl-2,2'-bipyridine) complex is an efficient H2-evolving catalyst in water when used in a molecular homogeneous photocatalytic system for hydrogen production with [RuII(bpy)3]2+ (bpy = 2,2'-bipyridine) as photosensitizer and ascorbic acid as sacrificial electron donor. The catalysis is believed to proceed via a two-electron reduction of the Rh(III) catalyst into the square-planar [RhI(dmbpy)2]+, which reacts with protons to form a Rh(III) hydride intermediate that can, in turn, release H2 following different pathways. To improve the current knowledge of these key intermediate species for H2 production, we performed herein a detailed electrochemical investigation of the [RhIII(dmbpy)2Cl2]+ and [RhIII(dtBubpy)2Cl2]+ (dtBubpy = 4,4'-di- tert-butyl-2,2'-bipyridine) complexes in CH3CN, which is a more appropriate medium than water to obtain reliable electrochemical data. The low-valent [RhI(Rbpy)2]+ and, more importantly, the hydride [RhIII(Rbpy)2(H)Cl]+ species (R = dm or dtBu) were successfully electrogenerated by bulk electrolysis and unambiguously spectroscopically characterized. The quantitative formation of the hydrides was achieved in the presence of weak proton sources (HCOOH or CF3CO3H), owing to the fast reaction of the electrogenerated [RhI(Rbpy)2]+ species with protons. Interestingly, the hydrides are more difficult to reduce than the initial Rh(III) bis-chloro complexes by ∼310-340 mV. Besides, 0.5 equiv of H2 is generated through their electrochemical reduction, showing that Rh(III) hydrides are the initial catalytic molecular species for hydrogen evolution. Density functional theory calculations were also performed for the dmbpy derivative. The optimized structures and the theoretical absorption spectra were calculated for the initial bis-chloro complex and for the various rhodium intermediates involved in the H2 evolution process.

2.
Phys Chem Chem Phys ; 17(16): 10497-509, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25804803

RESUMO

We recently reported an efficient molecular homogeneous photocatalytic system for hydrogen (H2) production in water combining [Rh(III)(dmbpy)2Cl2](+) (dmbpy = 4,4'-dimethyl-2,2'-bipyridine) as a H2 evolving catalyst, [Ru(II)(bpy)3](2+) (bpy = 2,2'-bipyridine) as a photosensitizer and ascorbic acid as a sacrificial electron donor (Chem. - Eur. J., 2013, 19, 781). Herein, the possible rhodium intermediates and mechanistic pathways for H2 production with this system were investigated at DFT/B3LYP level of theory and the most probable reaction pathways were proposed. The calculations confirmed that the initial step of the mechanism is a reductive quenching of the excited state of the Ru photosensitizer by ascorbate, affording the reduced [Ru(II)(bpy)2(bpy˙(-))](+) form, which is capable, in turn, of reducing the Rh(III) catalyst to the distorted square planar [Rh(I)(dmbpy)2](+) species. This two-electron reduction by [Ru(II)(bpy)2(bpy˙(-))](+) is sequential and occurs according to an ECEC mechanism which involves the release of one chloride after each one-electron reduction step of the Rh catalyst. The mechanism of disproportionation of the intermediate Rh(II) species, much less thermodynamically favoured, cannot be barely ruled out since it could also be favoured from a kinetic point of view. The Rh(I) catalyst reacts with H3O(+) to generate the hexa-coordinated hydride [Rh(III)(H)(dmbpy)2(X)](n+) (X = Cl(-) or H2O), as the key intermediate for H2 release. The DFT study also revealed that the real source of protons for the hydride formation as well as the subsequent step of H2 evolution is H3O(+) rather than ascorbic acid, even if the latter does govern the pH of the aqueous solution. Besides, the calculations have shown that H2 is preferentially released through an heterolytic mechanism by reaction of the Rh(III)(H) hydride and H3O(+); the homolytic pathway, involving the reaction of two Rh(III)(H) hydrides, being clearly less favoured. In parallel to this mechanism, the reduction of the Rh(III)(H) hydride into the penta-coordinated species [Rh(II)(H)(dmbpy)2](+) by [Ru(II)(bpy)2(bpy˙(-))](+) is also possible, according to the potentials of the respective species determined experimentally and this is confirmed by the calculations. From this Rh(II)(H) species, the heterolytic and homolytic pathways are both thermodynamically favourable to produce H2 confirming that Rh(II)(H) is as reactive as Rh(III)(H) towards the production of H2.

3.
J Am Chem Soc ; 136(21): 7655-61, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24799030

RESUMO

Hydrogen produced from water and solar energy holds much promise for decreasing the fossil fuel dependence. It has recently been proven that the use of quantum dots as light harvesters in combination with catalysts is a valuable strategy to obtain photogenerated hydrogen. However, the light to hydrogen conversion efficiency of these systems is reported to be lower than 40%. The low conversion efficiency is mainly due to losses occurring at the different interfacial charge-transfer reactions taking place in the multicomponent system during illumination. In this work we have analyzed all the involved reactions in the hydrogen evolution catalysis of a model system composed of CdTe quantum dots, a molecular cobalt catalyst and vitamin C as sacrificial electron donor. The results demonstrate that the electron transfer from the quantum dots to the catalyst occurs fast enough and efficiently (nanosecond time scale), while the back electron transfer and catalysis are much slower (millisecond and microsecond time scales). Further improvements of the photodriven proton reduction should focus on the catalytic rate enhancement, which should be at least in the hundreds of nanoseconds time scale.

4.
Angew Chem Int Ed Engl ; 53(1): 240-3, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24259443

RESUMO

A key intermediate in the electroconversion of carbon dioxide to carbon monoxide, catalyzed by a manganese tris(carbonyl) complex, is characterized. Different catalytic pathways and their potential reaction mechanisms are investigated using a large range of experimental and computational techniques. Sophisticated spectroscopic methods including UV/Vis absorption and pulsed-EPR techniques (2P-ESEEM and HYSCORE) were combined together with DFT calculations to successfully identify a key intermediate in the catalytic cycle of CO2 reduction. The results directly show the formation of a metal-carboxylic acid-CO2 adduct after oxidative addition of CO2 and H(+) to a Mn(0) carbonyl dimer, an unexpected intermediate.

5.
Angew Chem Int Ed Engl ; 53(6): 1654-8, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24382834

RESUMO

The development of multicomponent molecular systems for the photocatalytic reduction of water to hydrogen has experienced considerable growth since the end of the 1970s. Recently, with the aim of improving the efficiency of the catalysis, single-component photocatalysts have been developed in which the photosensitizer is chemically coupled to the hydrogen-evolving catalyst in the same molecule through a bridging ligand. Until now, none of these photocatalysts has operated efficiently in pure aqueous solution: a highly desirable medium for energy-conversion applications. Herein, we introduce a new ruthenium-rhodium polypyridyl complex as the first efficient homogeneous photocatalyst for H2 production in water with turnover numbers of several hundred. This study also demonstrates unambiguously that the catalytic performance of such systems linked through a nonconjugated bridge is significantly improved as compared to that of a mixture of the separate components.

6.
Chemistry ; 19(2): 782-92, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23169449

RESUMO

We report a very efficient homogeneous system for the visible-light-driven hydrogen production in pure aqueous solution at room temperature. This comprises [Rh(III) (dmbpy)(2)Cl(2)]Cl (1) as catalyst, [Ru(bpy)(3)]Cl(2) (PS1) as photosensitizer, and ascorbate as sacrificial electron donor. Comparative studies in aqueous solutions also performed with other known rhodium catalysts, or with an iridium photosensitizer, show that 1) the PS1/1/ascorbate/ascorbic acid system is by far the most active rhodium-based homogeneous photocatalytic system for hydrogen production in a purely aqueous medium when compared to the previously reported rhodium catalysts, Na(3)[Rh(I) (dpm)(3)Cl] and [Rh(III)(bpy)Cp*(H(2)O)]SO(4) and 2) the system is less efficient when [Ir(III) (ppy)(2)(bpy)]Cl(PS2) is used as photosensitizer. Because catalyst 1 is the most efficient rhodium-based H(2)-evolving catalyst in water, the performance limits of this complex were further investigated by varying the PS1/1 ratio at pH 4.0. Under optimal conditions, the system gives up to 1010 turnovers versus the catalyst with an initial turnover frequency as high as 857 TON h(-1). Nanosecond transient absorption spectroscopy measurements show that the initial step of the photocatalytic H(2)-evolution mechanism is a reductive quenching of the PS1 excited state by ascorbate, leading to the reduced form of PS1, which is then able to reduce [Rh(III)(dmbpy)(2)Cl(2)](+) to [Rh(I)(dmbpy)(2)](+). This reduced species can react with protons to yield the hydride [Rh(III)(H)(dmbpy)(2)(H(2)O)](2+), which is the key intermediate for the H(2) production.

7.
Phys Chem Chem Phys ; 15(40): 17544-52, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24030544

RESUMO

A very efficient homogeneous system for visible-light driven hydrogen production in water is reported. This comprises the [Co(CR)Cl2](+) cobalt(III) tetraaza-macrocyclic complex (Cat1) as a noble metal-free catalyst, [Ru(bpy)3]Cl2 as a photosensitizer and ascorbate/ascorbic acid as a sacrificial electron donor and buffer. This system gives up to 1000 turnovers at pH 4.0 versus the catalyst with a relatively low photosensitizer/catalyst ratio (10/1) and a high concentration of catalyst (1 × 10(−4) M), thus producing a significant amount of H2 (12.3 mL for 5 mL of solution). It also exhibits long-term stability (more than 20 hours). The efficiency of Cat1 has been compared under the same experimental conditions to those of three other H2-evolving catalysts, which are known to operate in water, [Co{(DO)(DOH)pn}Br2] (Cat2), [Co(dmbpy)3]Cl2 (Cat3) and [Rh(dmbpy)2Cl2]Cl (Cat4). These comparative studies show that Cat4, although based on a noble metal, is about four times less active, while Cat2 and Cat3 produce more than one hundred times less hydrogen than Cat1. The low-valent CoI form of Cat1 has been successfully electrogenerated in CH3CN. Its high stability can be related to the high catalytic performance of the Cat1 system. We have also shown that in acidic aqueous solution (photocatalytic conditions) reduction at a slightly more negative potential than the Co(II)/Co(I) couple is needed to ensure efficient catalysis; this reduction is performed by the photogenerated [Ru(II)(bpy)2(bpy(˙−))](+) species.

8.
Langmuir ; 28(29): 10916-24, 2012 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-22742072

RESUMO

A new method based on the electrochemical oxidation of thiols was used to easily generate multilayer assemblies of coordination complexes on a gold surface. For this purpose, two complexes bearing two anchoring groups for surface attachment have been prepared: [Ru(tpySH)(2)](2+) (1) and [Fe(tpySH)(2)](2+) (2) (tpySH = 4'-(2-(p-phenoxy)ethanethiol)-2,2':6',2″-terpyridine). Cyclic voltammetry of 1 in CH(3)CN exhibits two successive oxidation processes. The first is irreversible and attributed to the oxidation of the thiol substituents, whereas the second is reversible and corresponds to the 1 e(-) metal-centered oxidation. In the case of 2 both processes are superimposed. Monolayers of 1 or 2 have been formed on gold electrodes by spontaneous adsorption from micromolar solutions of the complexes in CH(3)CN. SAMs (self-assembled monolayers) exhibit redox behavior similar to the complexes in solution. The high surface coverage value obtained (Γ = 6 × 10(-10) and 4 × 10(-10) mol cm(-2) for 1 and 2, respectively) is consistent with a vertical orientation for the complexes; thus, one thiol is bound to the gold electrode, with the second unreacted thiol moiety exposed to the outer surface. Successive cyclic voltammetry induced a layer-by-layer nanostructural growth at the surface of the SAMs, and this is presumably due to the electrochemical formation of disulfide bonds, where the thiol moieties play a double role of both an anchoring group and an electroactive coupling agent. The conditions of the deposition are studied in detail. Modified electrodes containing both 1 and 2 alternatively can be easily prepared following this new approach. The film proved to be stable, displaying a similar current/voltage response for more than 10 repeating cycles in oxidation up to 0.97 V vs Ag/AgNO(3) (10(-2) M).


Assuntos
Técnicas Eletroquímicas , Ouro/química , Ferro/química , Compostos Organometálicos/química , Piridinas/química , Rutênio/química , Estrutura Molecular , Compostos Organometálicos/síntese química , Propriedades de Superfície
9.
Langmuir ; 28(32): 11779-89, 2012 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-22809216

RESUMO

Reaction of dimeric [Rh(II)(2)(phen)(2)(µ-OAc)(2)(MeCN)(2)](BF(4))(2) (phen =1,10-phenanthroline) with pyrazine (pz) in a 1:2 ratio leads to the new 1-D metal-metal-bonded coordination oligomer {[Rh(II)(2)(phen)(2)(µ-OAc)(2)(pz)](BF(4))(2)}(n) (Rh-Rhpz)(n) (1), where each Rh atom of the dimeric unit (Rh-Rh) is coordinated in the equatorial plane to a nitrogen atom of a rigid and linear bifunctionalized organic linker (pz). Single X-ray diffraction analysis reveals the 1-D straight oligomeric chain structure (molecular wire, MW) consists of alternating (Rh-Rh) units and pz linking ligands with free BF(4)(-) as counteranions, and each metal center has a slightly distorted octahedral arrangement. The presence of accessible labile MeCN groups on both ends of these MWs ("free ends") enables functionalization of a 4-mercaptopyridine-gold coordinating platform (Au/MP) to form in one step a layer of coordination oligomer (Au/MP(Rh-Rhpz)(n); n ≈ 50). Furthermore (Rh-Rhpz)(n) (n = 1-6) MWs were grafted to Au/MP surfaces by a conventional step-by-step assembly construction involving coordination reactions between the Rh dimer ([Rh(2)(phen)(2)(µ-OAc)(2)(MeCN)(2)](BF(4))(2) (2)) and pz. A detailed physicochemical study (UV-vis, RAIR, QCM-D, ellipsometry, contact angle measurements, as well as impedance spectroscopy and cyclic voltammetry) has been made during both assembly methods to characterize the resulting surface-anchored coordination molecular wire (CMW) layers (Au/MP(Rh-Rhpz)(n)). The results indicate that the immobilized molecular assemblies (MAs) were successfully fabricated using both methods of assembly. The efficiency of the two methods is discussed.

10.
Chemistry ; 17(15): 4313-22, 2011 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-21374746

RESUMO

Optical excitation in the visible region of trans-(Cl)-[Os(bpy)(CO)(2)Cl(2)] (bpy=2,2'-bipyridine; C1) and trans-(Cl)-[Os(dmbpy)(CO)(2)Cl(2)] (dmbpy=4,4'-dimethyl 2,2'-bipyridine; C2) is known to induce the common CO dissociation reaction. However, the quantum yield of the reactions is less than 0.15, although C1 and C2 display pronounced photoluminescence in the visible region at room temperature with a lifetime of few tens of nanoseconds. Taking into account the characteristics of their emitting state, we have investigated the capability of C1 and C2 to act as a photosensitiser in redox reactions in different solvents (MeCN, PrCN and DMF). The efficient oxidation and reduction of both complexes under continuous irradiation in the presence of a sacrificial electron acceptor or donor is reported here. The photo-induced transformations and the nature of the resulting compounds were analysed by UV/Vis and IR spectroscopies and cyclic voltammetry. Photo-induced oxidation of C1 and C2 leads to the corresponding monocarbonyl oxidised species, whereas photo-induced reduction under argon leads mainly to the formation of the corresponding Os-bonded molecular wires P1 and P2 after exchange of two electrons associated with the loss of two chloro ligands. The chemical yield of the latter reaction (around 65%) becomes quantitative by adding [Ru(bpy)(3)](2+) as an external redox photosensitiser. This behaviour has been used to photocatalyse the two electron, two proton conversion of CO(2) to CO. Turnover numbers (TON) of 11.5 and 19.5 have been obtained respectively for C1 and C2 after 4.5 h of irradiation under CO(2) in DMF with triethanolamine as the electron donor. TON can be slightly increased by adding [Ru(bpy)(3)](2+) to the solution.

11.
Inorg Chem ; 50(21): 10581-91, 2011 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-21853972

RESUMO

We report herein the synthesis and characterization of four new bisterpyridine dinuclear ruthenium complexes containing the dimethyldihydropyrene (DHP) photochrome as bridging ligand. A synthetic strategy has been developed based on a Suzuki coupling reaction to synthesize these novel terpyridine-DHPs. The reactivity of these different ligands and dinuclear ruthenium complexes with light was examined by (1)H NMR and monitoring the changes in their absorption spectra upon irradiation at controlled wavelengths. The free ligands and their corresponding ruthenium complexes all displayed photochromic properties with highly efficient conversion between the closed stable isomers (DHP) and their open forms (CPD). The properties of the compounds in their closed and open forms were investigated by cyclic voltammetry, spectroscopy, and luminescence measurements.

12.
Inorg Chem ; 50(17): 8427-36, 2011 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-21812445

RESUMO

A new pentanuclear bis(triple-helical) manganese complex has been isolated and characterized by X-ray diffraction in two oxidation states: [{Mn(II)(µ-bpp)(3)}(2)Mn(II)(2)Mn(III)(µ-O)](3+) (1(3+)) and [{Mn(II)(µ-bpp)(3)}(2)Mn(II)Mn(III)(2)(µ-O)](4+) (1(4+)). The structure consists of a central {Mn(3)(µ(3)-O)} core of Mn(II)(2)Mn(III) (1(3+)) or Mn(II)Mn(III)(2) ions (1(4+)) which is connected to two apical Mn(II) ions through six bpp(-) ligands. Both cations have a triple-stranded helicate configuration, and a pair of enantiomers is present in each crystal. The redox properties of 1(3+) have been investigated in CH(3)CN. A series of five distinct and reversible one-electron waves is observed in the -1.0 and +1.50 V potential range, assigned to the Mn(II)(4)Mn(III)/Mn(II)(5), Mn(II)(3)Mn(III)(2)/Mn(II)(4)Mn(III), Mn(II)(2)Mn(III)(3)/Mn(II)(3)Mn(III)(2), Mn(II)Mn(III)(4)/Mn(II)(2)Mn(III)(3), and Mn(III)(5)/Mn(II)Mn(III)(4) redox couples. The two first oxidation processes leading to Mn(II)(3)Mn(III)(2) (1(4+)) and Mn(II)(2)Mn(III)(3) (1(5+)) are related to the oxidation of the Mn(II) ions of the central core and the two higher oxidation waves, close in potential, are thus assigned to the oxidation of the two apical Mn(II) ions. The 1(4+) and 1(5+) oxidized species and the reduced Mn(4)(II) (1(2+)) species are quantitatively generated by bulk electrolyses demonstrating the high stability of the pentanuclear structure in four oxidation states (1(2+) to 1(5+)). The spectroscopic characteristics (X-band electron paramagnetic resonance, EPR, and UV-visible) of these species are also described as well as the magnetic properties of 1(3+) and 1(4+) in solid state. The powder X- and Q-band EPR signature of 1(3+) corresponds to an S = 5/2 spin state characterized by a small zero-field splitting parameter (|D| = 0.071 cm(-1)) attributed to the two apical Mn(II) ions. At 40 K, the magnetic behavior is consistent for 1(3+) with two apical S = 5/2 {Mn(II)(bpp)(3)}(-) and one S = 2 noninteracting spins (11.75 cm(3) K mol(-1)), and for 1(4+) with three S = 5/2 noninteracting spins (13.125 cm(3) K mol(-1)) suggesting that the {Mn(II)(2)Mn(III)(µ(3)-O)}(5+) and {Mn(II)Mn(III)(2)(µ(3)-O)}(6+) cores behave at low temperature like S = 2 and S = 5/2 spin centers, respectively. The thermal behavior below 40 K highlights the presence of intracomplex magnetic interactions between the two apical spins and the central core, which is antiferromagnetic for 1(3+) leading to an S(T) = 3 and ferromagnetic for 1(4+) giving thus an S(T) = 15/2 ground state.


Assuntos
Manganês/química , Compostos Organometálicos/química , Oxigênio/química , Eletroquímica , Magnetismo , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Oxirredução , Estereoisomerismo
13.
Angew Chem Int Ed Engl ; 50(42): 9903-6, 2011 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-21922614

RESUMO

Manganese at work: carbonyl bipyridyl complexes based on manganese, a non-noble abundant and inexpensive metal, have been proved to be excellent molecular catalysts for the selective electrochemical reduction of CO(2) to CO under mild conditions. Another advantage of manganese complexes over rhenium complexes is that these catalysts operate at markedly less overpotential (0.40 V gain).


Assuntos
Dióxido de Carbono/química , Compostos Organometálicos/química , Catálise , Conformação Molecular , Oxirredução
14.
Phys Chem Chem Phys ; 12(47): 15428-35, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-20976319

RESUMO

The metal bonded ruthenium polymer [Ru(0)(bpy)(CO)(2)](n) (bpy = 2,2'-bipyridine) is known to be a very promising and efficient solid material for catalysis applications, such as carbon dioxide electroreduction in pure aqueous media and the water-gas shift reaction. It also exhibits potential application for molecular electronics as a conductive molecular wire. The insolubility and relative air-sensitivity of [Ru(0)(bpy)(CO)(2)](n) as well as the lack of monocrystals make its structural characterization very challenging. A first approach to determine the structure of this polymer has been obtained by ab initio X-ray powder diffraction, based on the known X-ray structure of [Ru(CO)(4)](n). In order to refine this structure, a non-conventional solid-state NMR study was performed. The results of this study are presented here. The comparison of high-resolution solid-state (13)C NMR spectra of the polymer with those of the corresponding monomeric [Ru(bpy)(CO)(2)Cl(2)] or dimeric [Ru(bpy)(CO)(2)Cl](2) precursor complexes has shown a clear shift and splitting of carbonyl ligand resonances, which turns out to be linearly correlated with the redox state of the Ru (ii, i or 0, respectively). Bipyridine resonances are also affected but in a non-trivial way. Finally, in the case of the dimer, it was found that the CO peak splitting (2.7 ppm) contains structural information, e.g. the ligand staggering angle. Based on DFT chemical shift calculations on corresponding model molecules (n = 1-2), all the described experimental observations could be reproduced. Moreover, upon extending these calculations to models of increasing length (n = 3-5), it turns out that information about the staggering angle between successive ligands is actually retained in the CO NMR computed peak splitting. Turning back to experiments, the CO broad signal measured for the wire could be decomposed into a major component (at 214.9 ppm) assigned to the internal CO ligands, and a minor doublet component (216.9 and 218.1 ppm) whose splitting (2.8 ppm) contains the staggering angle information. Finally, from the relative integrals of these three components, expected to be in the ratio 1 : 1 : n-2, it was possible to tentatively estimate the length n of the polymetallic wire (n = 7).

15.
Chemistry ; 15(4): 980-8, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19065688

RESUMO

The mononuclear manganese bis-terpyridine complex [Mn(tolyl-terpy)(2)](X)(3) (1(X)(3); X=BF(4), ClO(4), PF(6); tolyl-terpy=4'-(4-methylphenyl)-2,2':6',2"-terpyridine), containing Mn in the unusual +III oxidation state, has been isolated and characterised. The 1(3+) ion is a rare example of a mononuclear Mn(III) complex stabilised solely by neutral N ligands. Complex 1(3+) is obtained by electrochemical oxidation of the corresponding Mn(II) compound 1(2+) in anhydrous acetonitrile. Under these conditions the cyclic voltammogram of 1(2+) exhibits not only the well-known Mn(II)/Mn(III) oxidation at E(1/2)=+0.91 V versus Ag/Ag(+) (+1.21 V vs. SCE) but also a second metal-based oxidation process corresponding to Mn(III)/Mn(IV) at E(1/2)=+1.63 V (+1.93 V vs. SCE). Single crystals of 1(PF(6))(3)2 CH(3)CN were obtained by an electrocrystallisation procedure. X-ray analysis unambiguously revealed its tetragonally compressed octahedral geometry and high-spin character. The electronic properties of 1(3+) were investigated in detail by magnetic measurements and theoretical calculations, from which a D value of +4.82 cm(-1) was precisely determined. Density functional and complete active space self consistent field ab initio calculations both correctly predict a positive sign of D, in agreement with the compressed tetragonal distortion observed in the X-ray structure of 1(PF(6))(3)2 CH(3)CN. The different contributions to D were calculated, and the results show that 1) the spin-orbit coupling part (+2.593 cm(-1)) is predominant compared to the spin-spin interaction (+1.075 cm(-1)) and 2) the excited triplet states make the dominant contribution to the total D value.

16.
Inorg Chem ; 48(7): 3125-31, 2009 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-19326928

RESUMO

The electrochemical behavior of two mononuclear Mn(II) bis-terpyridine complexes, [Mn(II)(L)(2)](2+) (L = terpy (2,2':6',2''-terpyridine) and (t)Bu(3)-terpy (4,4',4''-tritert-butyl-2,2':6',2''-terpyridine)), has been investigated in dry CH(3)CN. Under these conditions, the cyclic voltammograms of these complexes exhibit not only the well-known Mn(II)/Mn(III) oxidation system but also a second metal-based oxidation one, corresponding to the Mn(III)/Mn(IV) redox couple. These oxidative processes are located at E(1/2) = +0.96 and +1.77 V vs Ag/Ag(+) (+1.26 and +2.07 V vs SCE) for the terpy complex and E(1/2) = +0.85 and +1.56 V vs Ag/Ag(+) (+1.15 and +1.86 V vs SCE) for the (t)Bu(3)-terpy derivative. The one-electron oxidized form of these complexes, [Mn(III)(L)(2)](3+), has been quantitatively generated by exhaustive electrolyses at E = 1.30 V, as previously observed in the case of the oxidation of [Mn(II)(tolyl-terpy)(2)](2+) (tolyl-terpy = 4'-(4-Methylphenyl)-2,2':6',2''-terpyridine) (Romain, S.; Duboc, C.; Neese, F.; Riviere, E.; Hanton, L. R.; Blackman, A. G.; Lepretre, J.-C.; Deronzier, A.; Collomb, M.-N. Chem.Eur. J. 2009, 15, 980-988). Further electrolyses at E = 1.65-1.80 V of [Mn(III)(L)(2)](3+) solutions have shown that the [Mn(IV)(L)(2)](4+) species is only stable for L = (t)Bu(3)-terpy because of the strong electron-donating properties of the tert-butyl substituents. These electrogenerated high-valent complexes are rare examples of mononuclear Mn(III) and Mn(IV) complexes stabilized solely by neutral N ligands. They have been fully characterized in solution by UV-visible and electron paramagnetic resonance (EPR) spectroscopies. A detailed investigation of the EPR spectra of the [Mn(II)((t)Bu(3)-terpy)(2)](2+) and [Mn(IV)((t)Bu(3)-terpy)(2)](4+) has allowed the determination of the spin Hamiltonian parameters for both systems (for Mn(II): |D| = 0.059 cm(-1); |E| = 0.014 cm(-1); E/D = 0.259; g(x) = g(y) = g(z) = 2.00 and for Mn(IV): |D| = 1.33(6) cm(-1); |E| = 0.36(4) cm(-1); E/D = 0.27; g(x) = 1.96(4); g(y) = 1.97(4); g(z) = 1.98(4)).


Assuntos
Manganês/química , Compostos Organometálicos/química , Piridinas/química , Eletroquímica , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Espectrofotometria Ultravioleta
17.
Inorg Chem ; 48(17): 8233-44, 2009 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-19655717

RESUMO

Electrochemical and spectroelectrochemical techniques were employed to study in detail the formation and so far unreported spectroscopic properties of soluble electroactive molecular chains with nonbridged metal-metal backbones, namely, [{Ru(0)(CO)(PrCN)(bpy)}(m)](n) (m = 0, -1) and [{Ru(0)(CO)(bpy)Cl}(m)](n) (m = -1, -2; bpy = 2,2'-bipyridine). The precursors cis-(Cl)-[Ru(II)(CO)(MeCN)(bpy)Cl(2)] (in PrCN) and mer-[Ru(II)(CO)(bpy)Cl(3)](-) (in tetrahydrofuran (THF) and PrCN) undergo one-electron reductions to reactive radicals [Ru(II)(CO)(MeCN)(bpy(*-))Cl(2)](-) and [Ru(II)(CO)(bpy(*-))Cl(3)](2-), respectively. Both [bpy(*-)]-containing species readily electropolymerize on concomitant dissociation of two chloride ligands and consumption of a second electron. Along this path, mer-to-fac isomerization of the bpy-reduced trichlorido complex (supported by density functional theory calculations) and a concentration-dependent oligomerization process contribute to the complex reactivity pattern. In situ spectroelectrochemistry (IR, UV/vis) has revealed that the charged polymer [{Ru(0)(CO)(bpy)Cl}(-)](n) is stable in THF, but in PrCN it converts readily to [Ru(0)(CO)(PrCN)(bpy)](n). An excess of chloride ions retards this substitution at low temperatures. Both polymetallic chains are completely soluble in the electrolyte solution and can be reduced reversibly to the corresponding [bpy(*-)]-containing species.

18.
Inorg Chem ; 48(21): 10281-8, 2009 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-19795871

RESUMO

The trinuclear oxo bridged manganese cluster, [Mn(IV)(3)O(4)(terpy)(terpyO(2))(2)(H(2)O)](S(2)O(8))(2) (5) (terpy = 2,2':2'',6'-terpyridine and terpyO(2) = 2,2':2'',6'-terpyridine 1,1''-dioxide), was isolated in an acidic aqueous medium from the reaction of MnSO(4), terpy, and oxone as chemical oxidant. The terpyO(2) ligands were generated in situ during the synthesis by partial oxidation of terpy. The complex crystallizes in the monoclinic space group P21/n with a = 14.251(5) A, b = 15.245(5) A, c = 24.672(5) A, alpha = 90.000(5) degrees, beta = 92.045(5) degrees, gamma = 90.000(5) degrees, and Z = 4. The triangular {Mn(IV)(3)O(4)}(4+) core observed in this complex is built up of a basal Mn(mu-O)(2)Mn unit where each Mn ion is linked to an apical Mn ion via mono(mu-O) bridges. The facial coordination of the two tridentate terpyO(2) ligands to the Mn(mu-O)(2)Mn unit allows the formation of the triangular core. 5 is also the first structurally characterized Mn complex with polypyridinyl N-oxide ligands. The variable-temperature magnetic susceptibility data for this complex, in the range of 10-300 K, are consistent with an S = 1/2 ground state and were fit using the spin Hamiltonian H(eff) with S(1) = S(2) = S(3) = 3/2, J(a) = -37 (+/-0.5) and J(b) = -53 (+/-1) cm(-1), where J(a) and J(b) are exchange constants through the mono-mu-oxo and the di-mu-oxo bridges, respectively. The doublet ground spin state of 5 is confirmed by EPR spectroscopic measurements. Density functional theory (DFT) calculations based on the broken symmetry approach reproduce the magnetic properties of 5 very well (calculated values: J(a) = -39.4 and J(b) = -55.9 cm(-1)), thus confirming the capability of this quantum chemical method for predicting the magnetic behavior of clusters involving more than two metal ions. The nature of the ground spin state of the magnetic {Mn(IV)(3)O(4)}(4+) core and the role of ancillary ligands on the magnitude of J are also discussed.


Assuntos
Magnetismo , Compostos de Manganês/química , Modelos Moleculares , Óxidos/química , Piridinas/química , Teoria Quântica , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Químicos , Estrutura Molecular , Oxirredução
19.
Dalton Trans ; 48(20): 6800-6811, 2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31033972

RESUMO

[Cr(ttpy)2]3+ (ttpy = 4'-(4-methylphenyl)-2,2':6,2''-terpyridine) exhibits rich electrochemical and photophysical properties. Cyclic voltammetry performed in CH3CN shows in the cathodic part the presence of three one-electron reversible systems at -0.47, -0.85 and -1.35 V vs. Ag/AgNO3 10-2 M. These systems are attributed to the reduction of the terpyridine ligands with a partial delocalization of the charge on the tolyl for the last reduction event. The three different reduced species were generated by exhaustive electrolysis and characterized by EPR and UV-visible spectroscopy; DFT calculations were performed to locate the spin density of the electrons added during the reduction. Visible light irradiation of [Cr(ttpy)2]3+ induces the population of a luminescent metal-centered excited state with a lifetime of 270 ns in deoxygenated CH3CN. This excited state can be quenched by an electron transfer process with triphenylphosphine (PPh3) or triethanolamine (TEOA). Using TEOA as a sacrificial electron donor, the doubly reduced species (i.e.[Cr(ttpy)2] +) can be generated under continuous irradiation. In the presence of [Ru(bpy)3]2+ as an additional photosensitizer, the photoreduction of [Cr(ttpy)2]3+ towards [Cr(ttpy)2]+ is accelerated. The trinuclear [{RuII(bpy)2(bpy-O-tpy)}2CrIII]7+ complex ([Ru2Cr]7+) in which a CrIII-bis-terpyridine centre is covalently linked to two RuII-tris-bipyridine moieties by oxo bridges has been synthesised. Its electrochemical, photophysical and photochemical properties were investigated in deoxygenated CH3CN. Cyclic voltammetry indicates only a poor electronic communication between the different subunits, whereas luminescence experiments show a strong quenching of the RuII* excited state by an intramolecular process. Continuous irradiation of [Ru2Cr]7+ under visible conditions in the presence of TEOA leads to [Ru2Cr]4+ where three electrons are stored on the [Cr(ttpy)] subunit.

20.
ACS Appl Mater Interfaces ; 8(25): 16136-46, 2016 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-27280969

RESUMO

A [Ru(bpy)3](2+)-like complex (L1) bearing two free terpyridine groups at the 5 and 5' positions of the same bipyridine, linked by the rigid and linear 2,5-dimethyl phenylene bridges has been synthesized to open access to two classes of linear molecular wires with photosensitive properties: a bimetallic coordination polymer and an inorganic triad. In this Research Article, we report on the synthesis and characterization of the resulting [{Ru(II_)Fe(II)}n](4n+) alternated bimetallic polymer and the [Co(III_)Ru(II_)Fe(II)](7+) triad based on the building block L1. The [{Ru(II_)Fe(II)}n](4n+) polymer is fully characterized in solution. Cyclic voltammetry and emission lifetime measurements show that the bridging ligand allows interaction between the metal centers in the excited state despite the lack of interactions in the ground state. Under visible irradiation, the polymer can be fully oxidized in the presence of a sacrificial electron acceptor in solution. Thin robust films of the polymer are easily obtained on ITO by a simple electrochemical procedure based on an electroreduction adsorption process. The ITO/[{Ru(II_)Fe(II)}n](4n+)-modified electrode behaves as a photocathode under irradiation in the presence of ArN2(+). The magnitude of the photocurrent is dependent on the film thickness, probably limited by the diffusion of charge in thicker film. On the other hand L1 is also used to construct a well-ordered triad in association with Co(III) and Fe(II) metallic centers as electron acceptor and donor, respectively. The metallic triad is anchored on ITO or on a SiO2 wafer, starting from a terpyridine phosphonate modified surface. AFM images prove the presence of the triad in a linear upward orientation. Irradiation of the ITO/[Co(III_)Ru(II_)Fe(II)](7+) modified surface in the presence of triethanolamine in CH3CN induces the generation of an anodic photocurrent of around 30 µA.cm(-2). The photocurrent density generated by the ITO/[Co(III_)Ru(II_)Fe(II)](7+) electrode, appears to be more stable than in the case of ITO/[{Ru(II_)Fe(II)}n](4n+) because of the presence of the anchoring group. Moreover, this photocurrent magnitude represents an enhancement of 30% compared to our previous triad ( Dalton Trans. 2014 , 43 , 12156 - 12159 ), proving the advantage of a linear and rigid spacer for the construction of such molecular assemblies with photoinduced charge transfer abilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA