Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Opt Soc Am A Opt Image Sci Vis ; 41(2): 296-302, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38437342

RESUMO

Controlling the diffraction properties of materials over a large area holds great promise for a wide range of optical applications. Laser-based techniques have emerged as a viable solution to address this need. Here, we present the diffraction properties of laser-induced self-organized structures, which consist of three interlaced grating-like structures: self-organized nanoparticles, self-organized cracks, and laser marking lines. Under normal incidence external illumination, the sample exhibits an asymmetric diffraction pattern. However, when the incidence angle is tilted, circular diffraction patterns are observed in the plane perpendicular to both the sample and the incidence plane. These phenomena are attributed to the combination effect of the diffraction gratings. To elucidate the underlying physics of multiple diffraction, we use rigorous coupled-wave analysis (RCWA) and grating equations written in direction cosine space, extended to account for the presence of three superimposed gratings. Exploiting the laser-induced diffraction properties of these samples may have great potential for various industrial implementations, including security, display, and design.

2.
Nano Lett ; 19(3): 1922-1930, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30721077

RESUMO

We describe a novel plasmonic-mode engineering, enabled by the structural symmetry of a plasmonic crystal with a metallic oligomer as unit cell. We show how the oligomer symmetry can tailor the scattering directions to spatially overlap with the diffractive orders directions of a plasmonic array. Applied to the color generation field, the presented approach enables the challenging achievement of a broad spectrum of angle-dependent colors since smooth and continuous generation of transmitted vibrant colors, covering both the cyan-magenta-yellow and the red-green-blue color spaces, is demonstrated by scattering angle- and polarization-dependent optical response. The addition of a symmetry driven level of control multiplies the possibility of optical information storage, being of potential interest for secured optical information encoding but also for nanophotonic applications, from demultiplexers or signal processing devices to on-chip optical nanocircuitry.

3.
Phys Chem Chem Phys ; 18(35): 24600-9, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27539293

RESUMO

This paper describes a model to simulate changes in the size distribution of metallic nanoparticles (NPs) in TiO2 films upon continuous wave light excitation. Interrelated laser induced physical and chemical processes initiated directly by photon absorption or by plasmon induced thermal heating are considered. Namely the model takes into account the NP coalescence, Ostwald ripening, the reduction of silver ions and the oxidation of metallic NPs, competitive mechanisms that can lead to counter-intuitive behaviors depending on the exposure conditions. Theoretical predictions are compared successfully to the experimental results deduced from a thorough analysis of scanning transmission electron microscopy (STEM) pictures of Ag:TiO2 films processed with a scanning visible laser beam at different speeds. Ag:TiO2 systems are considered for many applications in solar energy conversion, photocatalysis or secured data printing. Numerical investigations of such a system provide a better understanding of light induced growth and shrinking processes and open up prospects for designing more efficient photocatalytic devices based on metal NP doped TiO2 or for improving the size homogeneity in self-organized metallic NP patterns, for instance.

4.
Appl Opt ; 52(21): 5262-71, 2013 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-23872775

RESUMO

This paper aims at showing that performing color calibration of an RGB camera can be achieved even in the case where the optical system before the camera introduces strong color distortion. In the present case, the optical system is a microscope containing a halogen lamp, with a nonuniform irradiance on the viewed surface. The calibration method proposed in this work is based on an existing method, but it is preceded by a three-step preprocessing of the RGB images aiming at extracting relevant color information from the strongly distorted images, taking especially into account the nonuniform irradiance map and the perturbing texture due to the surface topology of the standard color calibration charts when observed at micrometric scale. The proposed color calibration process consists first in computing the average color of the color-chart patches viewed under the microscope; then computing white balance, gamma correction, and saturation enhancement; and finally applying a third-order polynomial regression color calibration transform. Despite the nonusual conditions for color calibration, fairly good performance is achieved from a 48 patch Lambertian color chart, since an average CIE-94 color difference on the color-chart colors lower than 2.5 units is obtained.


Assuntos
Cor , Microscopia de Vídeo/instrumentação , Microscopia/instrumentação , Calibragem , Colorimetria/instrumentação , Colorimetria/métodos , Desenho de Equipamento , Humanos , Processamento de Imagem Assistida por Computador/métodos , Iluminação/instrumentação , Microscopia/métodos , Microscopia de Vídeo/métodos , Reprodutibilidade dos Testes
5.
Nanoscale ; 15(47): 19339-19350, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38009459

RESUMO

Plasmonic metasurfaces made of perfectly regular 2D lattices of metallic nanoparticles deposited on surfaces or close to waveguides can exhibit hybridized plasmonic and photonic modes. The latter arise from the excitation of surface or guided modes through the in-plane coherent scattering of periodic arrays. Recently, laser-induced self-organization of random plasmonic metasurfaces has been used to create nanoparticle gratings embedded in protective layers. Despite the broad size distribution and positional disorder of nanoparticles, the resulting nanostructures exhibit strong coupling between plasmonic and photonic modes in transverse electric polarization, leading to dichroism, which is well-reproduced from one laser printing to another. Here, we examine quantitatively the effect of inhomogeneities at the nanoscale on the hybridization between localized plasmonic modes and delocalized guided modes by considering realistic laser-induced self-organized nanoparticle arrays embedded in a two-layer system. By referring to regular samples, we describe the optical mechanisms involved in the hybridization process at characteristic wavelengths, based on far and near field simulations. Two kinds of real samples are considered, featuring different levels of coupling between the plasmonic and photonic modes. The results demonstrate that controlling the statistical properties of plasmonic metasurfaces, such as the nanoparticle size distribution and average position, over areas a few micrometers wide is enough to control in a reproducible manner the hybridization mechanisms and their resulting optical properties. Thus, this study shows that the inherent irregularities of laser-induced self-organized nanostructures are compatible with smart functionalities of nanophotonics, and confirms that laser processing has huge potential for real-world applications.

6.
ACS Nano ; 16(6): 9410-9419, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35657964

RESUMO

Structural colors of plasmonic metasurfaces have been promised to a strong technological impact thanks to their high brightness, durability, and dichroic properties. However, fabricating metasurfaces whose spatial distribution must be customized at each implementation and over large areas is still a challenge. Since the demonstration of printed image multiplexing on quasi-random plasmonic metasurfaces, laser processing appears as a promising technology to reach the right level of accuracy and versatility. The main limit comes from the absence of physical models to predict the optical properties that can emerge from the laser processing of metasurfaces in which random metallic nanostructures are characterized by their statistical properties. Here, we demonstrate that deep neural networks trained from experimental data can predict the spectra and colors of laser-induced plasmonic metasurfaces in various observation modes. With thousands of experimental data, produced in a rapid and efficient way, the training accuracy is better than the perceptual just noticeable change. This accuracy enables the use of the predicted continuous color charts to find solutions for printing multiplexed images. Our deep learning approach is validated by an experimental demonstration of laser-induced two-image multiplexing. This approach greatly improves the performance of the laser-processing technology for both printing color images and finding optimized parameters for multiplexing. The article also provides a simple mining algorithm for implementing multiplexing with multiple observation modes and colors from any printing technology. This study can improve the optimization of laser processes for high-end applications in security, entertainment, or data storage.

7.
Adv Mater ; 34(2): e2104054, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34648203

RESUMO

Passive plasmonic metasurfaces enable image multiplexing by displaying different images when altering the conditions of observation. Under white light, three-image multiplexing with polarization-selective switching has been recently demonstrated using femtosecond-laser-processed random plasmonic metasurfaces. Here, the implementation of image multiplexing is extended, thanks to a color-search algorithm, to various observation modes compatible with naked-eye observation under incoherent white light and to four-image multiplexing under polarized light. The laser-processed random plasmonic metasurfaces enabling image multiplexing exhibit self-organized patterns that can diffract light or induce dichroism through hybridization between the localized surface plasmon resonance of metallic nanoparticles and a lattice resonance. Improved spatial resolution makes the image quality compatible with commercial use in secured documents as well as the processing time and cost thanks to the use of a nanosecond laser. This high-speed and flexible laser process, based on energy-efficient nanoparticle reshaping and self-organization, produces centimeter-scale customized tamper-proof images at low cost, which can serve as overt security features.

8.
Langmuir ; 26(11): 8729-36, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20201484

RESUMO

Silver nanoparticles and silver nanowires have been grown inside mesostructured silica films obtained from block copolymers using two successive reduction steps: the first one involves a sodium borohydride reduction or a photoreduction of silver nitrate contained in the film, and the second one consists of a silver deposit on the primary nanoparticles, carried out by silver ion solution reduction with hydroxylamine chloride. We have demonstrated that the F127 block copolymer ((PEO)(106)(PPO)(70)(PEO)(106)), "F type", mesostructured silica film is a suitable "soft" template for the fabrication of spherical silver nanoparticles arrays. Silver spheres grow from 7 to 11 nm upon the second reduction step. As a consequence, a red shift of the surface plasmon resonance associated with metallic silver has been observed and attributed to plasmonic coupling between particles. Using a P123 block copolymer ((PEO)(20)(PPO)(70)(PEO)(20)), "P type", mesostructured silica film, we have obtained silver nanowires with typical dimension of 10 nm x 100 nm. The corresponding surface plasmon resonance is blue-shifted. The hydroxylamine chloride treatment appears to be efficient only when a previous chemical reduction is performed, assuming that the first sodium borohydride reduction induces a high concentration of silver nuclei in the first layer of the porous silica (film/air interface), which explains their reactivity for further growth.

9.
Langmuir ; 26(2): 1199-206, 2010 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-20067316

RESUMO

Elaboration of mesoporous titanium oxide film supporting silver nanoparticles is described. Mesoporous titanium oxide films are characterized by TEM analysis. Titania films are infiltrated with a silver salt solution and chemical reduction treatments are performed using either a NaBH(4) or a formaldehyde solution. Infiltrated films are then characterized by TEM, SEM, AFM, UV-visible spectroscopy, X-ray diffraction, and Rutherford Backscattering Spectrometry (RBS). The utilization of a mesoporous titania substrate allows to control the nanoparticle size and the interparticle distance. RBS experiments provide the evidence that NaBH(4) treatment induces a strong accumulation of silver nanoparticles in the subsurface of the layer, while formaldehyde treatment induces the formation of silver nanoparticles embedded into almost the whole depth of the titania film. Large silver nanocrystals are also formed at the film surface whatever the reducer used. A broad visible absorption band related to the surface plasmon resonance (SPR) is obtained in both cases and is strongly red-shifted compared to the SPR obtained for silver nanoparticles inside a silica matrix. Moreover, irradiation with visible light causes the photooxidation of silver nanoparticles by titania and a complete discoloration of the material. The photooxidation is related to a drastic decrease in the silver nanoparticle size and is found to be reversible, particularly in the case of the material obtained by the formaldehyde reduction.

10.
Nanomaterials (Basel) ; 7(10)2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-29039814

RESUMO

The microstructuring of the distribution of silver nanoparticles (NPs) in mesoporous titania films loaded with silver salts, using two-beam interference lithography leading to 1 Dimension (1D) grating, induces variations in the photocatalytic efficiency. The influence of the structuration was tested on the degradation of methyl blue (MB) under ultraviolet (UV) and visible illumination, giving rise to a significant improvement of the photocatalytic efficiency. The periodic distribution of the NPs was characterized by transmission electron microscopy (TEM), high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and scanning electron microscopy (SEM).

11.
ACS Nano ; 11(5): 5031-5040, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28471649

RESUMO

Controlling plasmonic systems with nanometer resolution in transparent films and their colors over large nonplanar areas is a key issue for spreading their use in various industrial fields. Using light to direct self-organization mechanisms provides high-speed and flexible processes to meet this challenge. Here, we describe a route for the laser-induced self-organization of metallic nanostructures in 3D. Going beyond the production of planar nanopatterns, we demonstrate that ultrafast laser-induced excitation combined with nonlinear feedback mechanisms in a nanocomposite thin film can lead to 3D self-organized nanostructured films. The process, which can be extended to complex layered composite systems, produces highly uniform large-area nanopatterns. We show that 3D self-organization originates from the simultaneous excitation of independent optical modes at different depths in the film and is activated by the plasmon-induced charge separation and thermally induced NP growth mechanisms. This laser color marking technique enables multiplexed optical image encoding and the generated nanostructured Ag NPs:TiO2 films offer great promise for applications in solar energy harvesting, photocatalysis, or photochromic devices.

12.
Appl Spectrosc ; 71(6): 1271-1279, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27956593

RESUMO

Giving paper and polymer photochromic properties under laser irradiation is challenging due to the low resistance of these materials to heat, their flexibility, and their possibly irregular structure. However, we could successfully deposit TiO2/Ag/TiO2 layers stacking on flexible white glossy paper and transparent polyethylene terephalate (PET) substrates using a reactive magnetron sputtering technique, and tailor coloration changes after laser irradiation, alternating visible and ultraviolet (UV) wavelengths. The sample colors are characterized by a panel of chromas depending on the irradiation conditions. We demonstrate that these chroma changes are due to morphological changes of Ag nanoparticles (NPs) after visible laser irradiation of the colored as-deposited sample. The process exhibits a good reversibility after subsequent UV irradiation due to the growth of new metallic Ag NPs. The colors displayed in diffuse reflection by the paper samples are more saturated than the ones displayed in regular transmission by PET samples. We demonstrate the efficiency of the photochromic process on such support by printing high resolution patterns exhibiting different colors depending on the observation conditions.

13.
Opt Express ; 14(26): 12613-22, 2006 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-19532152

RESUMO

A resonant grating mirror comprising a multilayer submirror and a grating slab waveguide submirror exhibiting constructive mutual reflection is shown experimentally to provide zero transmission. Its reflection line width of less than 1 nm, its polarization selectivity and low overall loss make the device usable as a longitudinal mode filter in a disk laser in the 1000-1100 nm wavelength range.

14.
Sci Rep ; 6: 32061, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27580515

RESUMO

In this work we theoretically and experimentally analyze the resonant behavior of individual 3 × 3 gold particle oligomers illuminated under normal and oblique incidence. While this structure hosts both dipolar and quadrupolar electric and magnetic delocalized modes, only dipolar electric and quadrupolar magnetic modes remain at normal incidence. These modes couple into a strongly asymmetric spectral response typical of a Fano-like resonance. In the basis of the coupled mode theory, an analytical representation of the optical extinction in terms of singular functions is used to identify the hybrid modes emerging from the electric and magnetic mode coupling and to interpret the asymmetric line profiles. Especially, we demonstrate that the characteristic Fano line shape results from the spectral interference of a broad hybrid mode with a sharp one. This structure presents a special feature in which the electric field intensity is confined on different lines of the oligomer depending on the illumination wavelength relative to the Fano dip. This Fano-type resonance is experimentally observed performing extinction cross section measurements on arrays of gold nano-disks. The vanishing of the Fano dip when increasing the incidence angle is also experimentally observed in accordance with numerical simulations.

16.
Appl Opt ; 43(4): 756-65, 2004 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-14960066

RESUMO

The refractive indices of optical materials are usually determined from spectrophotometric and ellipsometric measurements of specular beams. When the roughness of the interfaces increases, the energy in the specularly reflected and transmitted beams decreases and scattering becomes predominant. For strong roughness (compared to the incident wavelength) a surface does not exhibit specular reflection or transmission, making difficult the determination of the refractive index. We describe two techniques, based on scattering measurements, that one can use to determine the refractive indices of opaque inhomogeneous media.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA