Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Reprod Biomed Online ; 43(5): 799-809, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34602345

RESUMO

RESEARCH QUESTION: What is the impact of radiation exposure on oocyte quality and female fertility? DESIGN: Prepubertal mice underwent whole-body irradiation with a single dose (0.02, 0.1, 0.5, 2, 8 Gy) of gamma- or X-rays. Oocytes were quantified in irradiated (n = 36) and sham-treated (n = 8) mice. After a single exposure to 2 Gy, formation of DNA double-strand breaks (n = 10), activation of checkpoint kinase (Chk2) (n = 10) and dynamics of follicular growth (n = 18) were analysed. Fertility assessment was performed in adult irradiated mice and controls from the number of pups per mouse (n = 28) and the fetal abortion rate (n = 24). Ploidy of mature oocytes (n = 20) was analysed after CREST immunostaining, and uterine sections were examined. RESULTS: Radiation exposure induced a massive loss of primordial follicles with LD50 below 50 mGy for both gamma and X-rays. Growing follicles survived doses up to 8 Gy. This difference in radiosensitivity was not due to a different amount of radio-induced DNA damage, and Chk2 was activated in all oocytes. Exposure to a 2 Gy dose abolished the long-term fertility of females due to depletion of the ovarian reserve. Detailed analysis indicates that surviving oocytes were able to complete folliculogenesis and could be fertilized. This transient fertility allowed irradiated females to produce a single litter albeit with a high rate of fetal abortion (23%, P = 0.0096), related to altered ploidy in the surviving oocytes (25.5%, P = 0.0035). CONCLUSIONS: The effects of radiation on surviving oocyte quality question natural conception as a first-line approach in cancer survivors. Together, the data emphasize the need for fertility preservation before radiation exposure and call for reassessment of the use of cryopreserved oocytes.


Assuntos
Preservação da Fertilidade/métodos , Oócitos/fisiologia , Oócitos/efeitos da radiação , Ovário/efeitos da radiação , Insuficiência Ovariana Primária/etiologia , Aborto Espontâneo , Aneuploidia , Animais , DNA/efeitos da radiação , Dano ao DNA , Modelos Animais de Doenças , Relação Dose-Resposta à Radiação , Feminino , Raios gama , Camundongos , Camundongos Endogâmicos C57BL , Folículo Ovariano/efeitos da radiação , Reserva Ovariana/efeitos da radiação , Maturidade Sexual/efeitos da radiação , Irradiação Corporal Total , Raios X
2.
Biomed Pharmacother ; 177: 117039, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38955085

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is a malignant hematological disorder characterized by an increased proliferation of immature T lymphocytes precursors. T-ALL treatment includes chemotherapy with strong side effects, and patients that undergo relapse display poor prognosis. Although cell-intrinsic oncogenic pathways are well-studied, the tumor microenvironment, like inflammatory cellular and molecular components is less explored in T-ALL. We sought to determine the composition of the inflammatory microenvironment induced by T-ALL, and its role in T-ALL progression. We show in two mouse T-ALL cell models that T-ALLs enhance blood neutrophils and resident monocytes, accompanied with a plasmatic acute secretion of inflammatory molecules. Depleting neutrophils using anti-Ly6G treatment or resident monocytes by clodronate liposomes treatment does not modulate plasmatic inflammatory molecule secretion and mice survival. However, inhibiting the secretion of inflammatory molecules by microenvironment with NECA, an agonist of adenosine receptors, diminishes T-ALL progression enhancing mouse survival. We uncovered Hepatocyte Growth Factor (HGF), T-ALL-driven and the most decreased molecule with NECA, as a potential therapeutic target in T-ALL. Altogether, we identified a signature of inflammatory molecules that can potentially be involved in T-ALL evolution and uncovered HGF/cMET pathway as important to target for limiting T-ALL progression.


Assuntos
Progressão da Doença , Fator de Crescimento de Hepatócito , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Microambiente Tumoral , Animais , Fator de Crescimento de Hepatócito/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral , Inflamação/patologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Monócitos/patologia
3.
Blood Cancer Discov ; 3(4): 285-297, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35290450

RESUMO

Current murine models of myeloproliferative neoplasms (MPNs) cannot examine how MPNs progress from a single bone marrow source to the entire hematopoietic system. Thus, using transplantation of knock-in JAK2V617F hematopoietic cells into a single irradiated leg, we show development of polycythemia vera (PV) from a single anatomic site in immunocompetent mice. Barcode experiments reveal that grafted JAK2V617F stem/progenitor cells migrate from the irradiated leg to nonirradiated organs such as the contralateral leg and spleen, which is strictly required for development of PV. Mutant cells colonizing the nonirradiated leg efficiently induce PV in nonconditioned recipient mice and contain JAK2V617F hematopoietic stem/progenitor cells that express high levels of carbonic anhydrase 1 (CA1), a peculiar feature also found in CD34+ cells from patients with PV. Finally, genetic and pharmacologic inhibition of CA1 efficiently suppresses PV development and progression in mice and decreases PV patients' erythroid progenitors, strengthening CA1 as a potent therapeutic target for PV. SIGNIFICANCE: Follow-up of hematopoietic malignancies from their initiating anatomic site is crucial for understanding their development and discovering new therapeutic avenues. We developed such an approach, used it to characterize PV progression, and identified CA1 as a promising therapeutic target of PV. This article is highlighted in the In This Issue feature, p. 265.


Assuntos
Anidrases Carbônicas , Neoplasias Hematológicas , Policitemia Vera , Animais , Neoplasias Hematológicas/patologia , Células-Tronco Hematopoéticas , Janus Quinase 2/genética , Camundongos , Policitemia Vera/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA