Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 21(1): 875-886, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33395313

RESUMO

Monoclonal antibodies (mAb) have had a transformative impact on treating cancers and immune disorders. However, their use is limited by high development time and monetary cost, manufacturing complexities, suboptimal pharmacokinetics, and availability of disease-specific targets. To address some of these challenges, we developed an entirely synthetic, multivalent, Janus nanotherapeutic platform, called Synthetic Nanoparticle Antibodies (SNAbs). SNAbs, with phage-display-identified cell-targeting ligands on one "face" and Fc-mimicking ligands on the opposite "face", were synthesized using a custom, multistep, solid-phase chemistry method. SNAbs efficiently targeted and depleted myeloid-derived immune-suppressor cells (MDSCs) from mouse-tumor and rat-trauma models, ex vivo. Systemic injection of MDSC-targeting SNAbs efficiently depleted circulating MDSCs in a mouse triple-negative breast cancer model, enabling enhanced T cell and Natural Killer cell infiltration into tumors. Our results demonstrate that SNAbs are a versatile and effective functional alternative to mAbs, with advantages of a plug-and-play, cell-free manufacturing process, and high-throughput screening (HTS)-enabled library of potential targeting ligands.


Assuntos
Nanopartículas Multifuncionais , Células Supressoras Mieloides , Nanopartículas , Animais , Anticorpos Monoclonais , Humanos , Células Matadoras Naturais , Camundongos , Ratos
3.
Int J Mol Sci ; 20(8)2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30999619

RESUMO

Osteoinductive bone morphogenetic proteins (BMPs), including BMP-2, have a unique capability of mediating bone formation both in orthotopic and ectopic locations. Immunosuppresive macrolides have been shown to potentiate BMP-2 activity through FKBP12, but these have yet to translate to effective osteoinductive therapies. Herein, we show the osteogenic activity of FK506 as a stand-alone agent in direct comparison to BMP-2 both in vitro and in vivo. FK506 was capable of producing stand-alone alkaline phosphatase induction in C2C12 cells comparable to that seen with rhBMP-2. FK506 treatment activated the BMP receptor, as shown by increased pSmad1/5 levels, and produced significantly higher mRNA levels of the early response genes in BMP and TGF-ß pathways. Additionally, the FK506 induction of alkaline phosphatase was shown to be resistant to Noggin treatment. In vivo osteogenic activity of FK506 was tested by local delivery on a collagen sponge in an ectopic subcutaneous implantation model in the rat. Dose responses of FK506 showed increasing levels of ectopic mineralization comparable to the mineral volume produced by BMP-2 delivery. These findings suggest that the use of FK506 can enhance osteoblastic differentiation in vitro and can induce mineralization when delivered locally in vivo.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Inibidores de Calcineurina/farmacologia , Osteogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Tacrolimo/farmacologia , Fosfatase Alcalina/metabolismo , Animais , Proteína Morfogenética Óssea 2/farmacologia , Calcineurina/metabolismo , Linhagem Celular , Humanos , Masculino , Camundongos , Ratos Nus , Proteínas Recombinantes/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia
4.
bioRxiv ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38559240

RESUMO

Bone grafting procedures are commonly used for the repair, regeneration, and fusion of bones in in a wide range of orthopaedic surgeries, including large bone defects and spine fusion procedures. Autografts are the clinical gold standard, though recombinant human bone morphogenetic proteins (rhBMPs) are often used, particularly in difficult clinical situations. However, treatment with rhBMPs can have off-target effects and significantly increase surgical costs, adding to patients' already high economic and mental burden. Recent studies have identified that FDA-approved immunosuppressant drug, FK506 (Tacrolimus), can also activate the BMP pathway by binding to its inhibitors. This study tested the hypothesis that FK506, as a standalone treatment, could induce osteogenic differentiation of human mesenchymal stromal cells (hMSCs), as well as functional bone formation in a rat segmental bone defect model and rabbit spinal fusion model. FK506 potentiated the effect of low dose BMP-2 to enhance osteogenic differentiation and mineralization of hMSCs in vitro. Standalone treatment with FK506 delivered on a collagen sponge, produced consistent bone bridging of a rat critically-sized femoral defect with functional mechanical properties comparable to naïve bone. In a rabbit single level posterolateral spine fusion model, treatment with FK506 delivered on a collagen sponge successfully fused the L5-L6 vertebrae at rates comparable to rhBMP-2 treatment. These data demonstrate the ability of FK506 to induce bone formation in human cells and two challenging in vivo models, and indicate FK506 can be utilized either as a standalone treatment or in conjunction with rhBMP to treat a variety of spine disorders.

5.
Bone ; 187: 117195, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002838

RESUMO

Bone grafting procedures are commonly used for the repair, regeneration, and fusion of bones in a wide range of orthopaedic surgeries, including large bone defects and spine fusion procedures. Autografts are the clinical gold standard, though recombinant human bone morphogenetic proteins (rhBMPs) are often used, particularly in difficult clinical situations. However, treatment with rhBMPs can have off-target effects and increase surgical costs, adding to patients' already high economic and mental burden. Recent studies have identified that FDA-approved immunosuppressant drug, FK506 (Tacrolimus), can also activate the BMP pathway by binding to its inhibitors. This study tested the hypothesis that FK506, as a standalone treatment, could induce osteogenic differentiation of human mesenchymal stromal cells (hMSCs), as well as functional bone formation in a rat segmental bone defect model and rabbit spinal fusion model. FK506 enhanced osteogenic differentiation and mineralization of hMSCs in vitro. Standalone treatment with FK506 delivered on a collagen sponge produced consistent bone bridging of a critically sized rat femoral defect with functional mechanical properties comparable to naïve bone. In a rabbit single level posterolateral spine fusion model, treatment with FK506 delivered on a collagen sponge successfully fused the L5-L6 vertebrae at rates comparable to rhBMP-2 treatment. These data demonstrate the ability of FK506 to induce bone formation in human cells and two challenging in vivo models, and indicate FK506 can be utilized to treat a variety of spine disorders.

6.
Foot Ankle Int ; 41(1): 101-108, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31910053

RESUMO

BACKGROUND: Our understanding of the biology of ankle arthrodesis is based largely on work in spine and long bone animal models. However, the local soft tissue and vascular anatomy of the foot and ankle is different from that of the spine. Accordingly, the objective of this study was to develop a small animal ankle arthrodesis model. METHODS: A total of 12 Lewis rats successfully underwent ankle arthrodesis with stabilization consisting of a single Kirschner wire across the prepared tibiotalar joint. Based on high nonunion rates with this initial procedure, a modification was made consisting of a second pin crossing the joint. A total of 6 rats underwent the second procedure. Radiographs were taken postoperatively and in 2-week intervals up to 10 weeks. Micro computed tomography (µCT) and histological analysis was conducted at 10 weeks to assess the fusion mass. Osseous bridging of greater than 50% across the tibiotalar joint was deemed a successful fusion. RESULTS: µCT analysis determined that 11 of the 12 rats in the single-pin cohort developed nonunions (8.3% fusion rate). In the dual-pin cohort, all 6 animals successfully fused (100% fusion rate). Histological analysis supported the radiographic imaging conclusions. CONCLUSION: While the initial procedure had a high nonunion rate, enhancing the stability of the fixation greatly increased the union rate. CLINICAL RELEVANCE: The present work demonstrates the first reliable small animal ankle arthrodesis model. We believe that this model can be used in the development of novel therapies aimed at decreasing complications and increasing fusion rates.


Assuntos
Articulação do Tornozelo/diagnóstico por imagem , Articulação do Tornozelo/cirurgia , Artrodese/métodos , Pinos Ortopédicos , Animais , Humanos , Masculino , Modelos Animais , Ratos Endogâmicos Lew , Microtomografia por Raio-X
7.
J Mech Behav Biomed Mater ; 107: 103757, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32276188

RESUMO

The hierarchical and anisotropic mechanical behavior requirement of load-bearing soft tissues limits the utility of conventional elastomeric materials as a replacement for soft-tissue materials. Liquid-crystal elastomers (LCEs) have the potential to excel in this regard owing to its unique combination of mesogenic order in an elastomeric network. In this study, the mechanical behavior of the LCEs relevant to load-bearing biomedical applications was explored. LCEs with different network orientations (i.e., mesogen alignments) were investigated by fabricating the LCEs with polydomain and monodomain configurations. The polydomain and monodomain LCEs with the same degree of network crosslinking demonstrated diverse mechanical behavior, ranging from highly stiff and elastic nature to high damping capacity, depending on the loading direction with respect to the network alignment. The LCEs were also capable of matching the anisotropic mechanical behavior of an intervertebral disc. Additional studies were conducted on the in vivo biological response of LCEs upon subcutaneous implantation, as well as on the effect of the exposure to an in vitro simulated physiological environment on the mechanical behavior. The LCEs' mechanical response was negligibly affected when exposed to biomedically relevant conditions. Furthermore, the solid and porous LCEs did not show any adverse effect on the surrounding tissues when implanted subcutaneously in rats. The biological response allows for tissue ingrowth and helps illustrate their utility in implantable biological devices. Finally, the utility of LCEs to mimic the mechanical function of biological tissue such as intervertebral disc was demonstrated by fabricating a proof of concept total disc replacement device.


Assuntos
Elastômeros , Disco Intervertebral , Cristais Líquidos , Animais , Porosidade , Próteses e Implantes , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA