Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34607949

RESUMO

Releasing sterile or incompatible male insects is a proven method of population management in agricultural systems with the potential to revolutionize mosquito control. Through a collaborative venture with the "Debug" Verily Life Sciences team, we assessed the incompatible insect technique (IIT) with the mosquito vector Aedes aegypti in northern Australia in a replicated treatment control field trial. Backcrossing a US strain of Ae. aegypti carrying Wolbachia wAlbB from Aedes albopictus with a local strain, we generated a wAlbB2-F4 strain incompatible with both the wild-type (no Wolbachia) and wMel-Wolbachia Ae. aegypti now extant in North Queensland. The wAlbB2-F4 strain was manually mass reared with males separated from females using Verily sex-sorting technologies to obtain no detectable female contamination in the field. With community consent, we delivered a total of three million IIT males into three isolated landscapes of over 200 houses each, releasing ∼50 males per house three times a week over 20 wk. Detecting initial overflooding ratios of between 5:1 and 10:1, strong population declines well beyond 80% were detected across all treatment landscapes when compared to controls. Monitoring through the following season to observe the ongoing effect saw one treatment landscape devoid of adult Ae. aegypti early in the season. A second landscape showed reduced adults, and the third recovered fully. These encouraging results in suppressing both wild-type and wMel-Ae. aegypti confirms the utility of bidirectional incompatibility in the field setting, show the IIT to be robust, and indicate that the removal of this arbovirus vector from human-occupied landscapes may be achievable.


Assuntos
Aedes/microbiologia , Infecções por Arbovirus/prevenção & controle , Infertilidade Masculina , Controle de Mosquitos/métodos , Wolbachia/metabolismo , Aedes/fisiologia , Animais , Infecções por Arbovirus/transmissão , Arbovírus , Austrália , Agentes de Controle Biológico , Feminino , Humanos , Masculino , Mosquitos Vetores/microbiologia , Queensland
2.
Med Vet Entomol ; 37(4): 826-833, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37622600

RESUMO

Aedes koreicus Edwards, 1917 (Hulecoetomyia koreica) is a mosquito (Diptera: Culicidae) from Northeast Asia with a rapidly expanding presence outside its original native range. Over the years, the species has been discovered in several new countries, either spreading after first introduction or remaining localised to limited areas. Notably, recent studies have demonstrated the ability of the species to transmit zoonotic parasites and viruses both in the field and in laboratory settings. Combined with its invasive potential, the possible role of Ae. koreicus in pathogen transmission highlights the public health risks resulting from its invasion. In this study, we used a recently established population from Italy to investigate aspects of biology that influence reproductive success in Ae. koreicus: autogeny, mating behaviour, mating disruption by the sympatric invasive species Aedes albopictus Skuse, 1894, and the presence of the endosymbiont Wolbachia pipientis Hertig, 1936. Our laboratory population did not exhibit autogenic behaviour and required a bloodmeal to complete its ovarian cycle. When we exposed Ae. koreicus females to males of Ae. albopictus, we observed repeated attempts at insemination and an aggressive, disruptive mating behaviour initiated by male Ae. albopictus. Despite this, no sperm was identified in Ae. koreicus spermathecae. Wolbachia, an endosymbiotic bacterium capable of influencing mosquito reproductive behaviour, was not detected in this Ae. koreicus population and, therefore, had no effect on Ae. koreicus reproduction.


Assuntos
Aedes , Feminino , Masculino , Animais , Reprodução , Inseminação , Itália , Biologia , Espécies Introduzidas , Mosquitos Vetores
3.
BMC Genomics ; 23(1): 426, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672676

RESUMO

BACKGROUND: An optimal starting point for relating genome function to organismal biology is a high-quality nuclear genome assembly, and long-read sequencing is revolutionizing the production of this genomic resource in insects. Despite this, nuclear genome assemblies have been under-represented for agricultural insect pests, particularly from the order Coleoptera. Here we present a de novo genome assembly and structural annotation for the coconut rhinoceros beetle, Oryctes rhinoceros (Coleoptera: Scarabaeidae), based on Oxford Nanopore Technologies (ONT) long-read data generated from a wild-caught female, as well as the assembly process that also led to the recovery of the complete circular genome assemblies of the beetle's mitochondrial genome and that of the biocontrol agent, Oryctes rhinoceros nudivirus (OrNV). As an invasive pest of palm trees, O. rhinoceros is undergoing an expansion in its range across the Pacific Islands, requiring new approaches to management that may include strategies facilitated by genome assembly and annotation. RESULTS: High-quality DNA isolated from an adult female was used to create four ONT libraries that were sequenced using four MinION flow cells, producing a total of 27.2 Gb of high-quality long-read sequences. We employed an iterative assembly process and polishing with one lane of high-accuracy Illumina reads, obtaining a final size of the assembly of 377.36 Mb that had high contiguity (fragment N50 length = 12 Mb) and accuracy, as evidenced by the exceptionally high completeness of the benchmarked set of conserved single-copy orthologous genes (BUSCO completeness = 99.1%). These quality metrics place our assembly ahead of the published Coleopteran genomes, including that of an insect model, the red flour beetle (Tribolium castaneum). The structural annotation of the nuclear genome assembly contained a highly-accurate set of 16,371 protein-coding genes, with only 2.8% missing BUSCOs, and the expected number of non-coding RNAs. The number and structure of paralogous genes in a gene family like Sigma GST is lower than in another scarab beetle (Onthophagus taurus), but higher than in the red flour beetle (Tribolium castaneum), which suggests expansion of this GST class in Scarabaeidae. The quality of our gene models was also confirmed with the correct placement of O. rhinoceros among other members of the rhinoceros beetles (subfamily Dynastinae) in a phylogeny based on the sequences of 95 protein-coding genes in 373 beetle species from all major lineages of Coleoptera. Finally, we provide a list of 30 candidate dsRNA targets whose orthologs have been experimentally validated as highly effective targets for RNAi-based control of several beetles. CONCLUSIONS: The genomic resources produced in this study form a foundation for further functional genetic research and management programs that may inform the control and surveillance of O. rhinoceros populations, and we demonstrate the efficacy of de novo genome assembly using long-read ONT data from a single field-caught insect.


Assuntos
Besouros , Sequenciamento por Nanoporos , Nudiviridae , Animais , Besouros/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Perissodáctilos/genética , Filogenia
4.
Pestic Biochem Physiol ; 187: 105209, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36127073

RESUMO

Insecticide resistance monitoring is essential in assessing the efficacy of vector control measures. However, gold standard PCR-based molecular analyses for insecticide resistance detection are often hindered by time-consuming sample processing, as well as considerable infrastructure and resourcing requirements. In this study, we combined a novel one-step sample preparation reagent with a rapid isothermal molecular test that detects a knock down resistance (kdr) mutation (F1534C) that enables pyrethroid resistance in Aedes aegypti mosquitoes. We trialled the rapid F1534C pyrethroid resistance test using insecticide resistant Ae. aegypti mosquito bodies and compared results to a conventional, allele-specific quantitative PCR (AS-qPCR) coupled with melt curve genotyping in corresponding mosquito heads. From a strain of Ae. aegypti established from an insecticide resistant population in Merida, Mexico (n = 27), all the mosquito bodies (n = 27) tested positive with the rapid F1534C test regardless of whether they were homozygous or heterozygous. To assess diagnostic test specificity, we confirmed that F1534 was not detected in laboratory-reared, fully susceptible Ae. aegypti mosquito bodies (n = 28) using the rapid F1534C test or the conventional AS-qPCR melt curve analysis. All corresponding mosquito heads (n = 28) were homozygous wild-type FF1534. The rapid F1534C test thus demonstrated 100% diagnostic sensitivity (95% CI: 87.23% to 100%) and 100% diagnostic specificity (95% CI: 87.66% to 100.00%) for detection of the F1534C pyrethroid resistant single nucleotide polymorphism (SNP) in both heterozygous and homozygous Ae. aegypti. In the collection of mutant mosquitoes from Mexico, CC1534 homozygous mutants occurred at a frequency of 74.1% (n = 20) and FC heterozygous mutants at a frequency of 25.9% (n = 7). The rapid F1534C test significantly reduced the sample processing and testing time from approximately 6 h for the AS-qPCR melt curve analysis to only 25 min. These results demonstrate significant potential for our approach to resistance testing as a field-based, low-resource, rapid alternative to time-consuming and expensive laboratory-based detection.


Assuntos
Aedes , Inseticidas , Piretrinas , Aedes/genética , Animais , Inseticidas/farmacologia , Mosquitos Vetores/genética , Mutação , Piretrinas/farmacologia , Recombinases/genética
5.
Environ Res ; 195: 110849, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33561446

RESUMO

BACKGROUND: The mosquitoes Aedes aegypti and Ae. albopictus are the primary vectors of dengue virus, and their geographic distributions are predicted to expand further with economic development, and in response to climate change. We aimed to estimate the impact of future climate change on dengue transmission through the development of a Suitable Conditions Index (SCI), based on climatic variables known to support vectorial capacity. We calculated the SCI based on various climate change scenarios for six countries in the Asia-Pacific region (Australia, China, Indonesia, The Philippines, Thailand and Vietnam). METHODS: Monthly raster climate data (temperature and precipitation) were collected for the period January 2005 to December 2018 along with projected climate estimates for the years 2030, 2050 and 2070 using Representative Concentration Pathway (RCP) 4·5, 6·0 and 8·5 emissions scenarios. We defined suitable temperature ranges for dengue transmission of between 17·05-34·61 °C for Ae. aegypti and 15·84-31·51 °C for Ae. albopictus and then developed a historical and predicted SCI based on weather variability to measure the expected geographic limits of dengue vectorial capacity. Historical and projected SCI values were compared through difference maps for the six countries. FINDINGS: Comparing different emission scenarios across all countries, we found that most South East Asian countries showed either a stable pattern of high suitability, or a potential decline in suitability for both vectors from 2030 to 2070, with a declining pattern particularly evident for Ae. albopictus. Temperate areas of both China and Australia showed a less stable pattern, with both moderate increases and decreases in suitability for each vector in different regions between 2030 and 2070. INTERPRETATION: The SCI will be a useful index for forecasting potential dengue risk distributions in response to climate change, and independently of the effects of human activity. When considered alongside additional correlates of infection such as human population density and socioeconomic development indicators, the SCI could be used to develop an early warning system for dengue transmission.


Assuntos
Aedes , Dengue , Animais , Austrália , China , Mudança Climática , Dengue/epidemiologia , Humanos , Indonésia/epidemiologia , Mosquitos Vetores , Tailândia , Vietnã
6.
BMC Biol ; 18(1): 104, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32819378

RESUMO

BACKGROUND: Hundreds of millions of people get a mosquito-borne disease every year and nearly one million die. Transmission of these infections is primarily tackled through the control of mosquito vectors. The accurate quantification of mosquito dispersal is critical for the design and optimization of vector control programs, yet the measurement of dispersal using traditional mark-release-recapture (MRR) methods is logistically challenging and often unrepresentative of an insect's true behavior. Using Aedes aegypti (a major arboviral vector) as a model and two study sites in Singapore, we show how mosquito dispersal can be characterized by the spatial analyses of genetic relatedness among individuals sampled over a short time span without interruption of their natural behaviors. RESULTS: Using simple oviposition traps, we captured adult female Ae. aegypti across high-rise apartment blocks and genotyped them using genome-wide SNP markers. We developed a methodology that produces a dispersal kernel for distance which results from one generation of successful breeding (effective dispersal), using the distance separating full siblings and 2nd- and 3rd-degree relatives (close kin). The estimated dispersal distance kernel was exponential (Laplacian), with a mean dispersal distance (and dispersal kernel spread σ) of 45.2 m (95% CI 39.7-51.3 m), and 10% probability of a dispersal > 100 m (95% CI 92-117 m). Our genetically derived estimates matched the parametrized dispersal kernels from previous MRR experiments. If few close kin are captured, a conventional genetic isolation-by-distance analysis can be used, as it can produce σ estimates congruent with the close-kin method if effective population density is accurately estimated. Genetic patch size, estimated by spatial autocorrelation analysis, reflects the spatial extent of the dispersal kernel "tail" that influences, for example, the critical radii of release zones and the speed of Wolbachia spread in mosquito replacement programs. CONCLUSIONS: We demonstrate that spatial genetics can provide a robust characterization of mosquito dispersal. With the decreasing cost of next-generation sequencing, the production of spatial genetic data is increasingly accessible. Given the challenges of conventional MRR methods, and the importance of quantified dispersal in operational vector control decisions, we recommend genetic-based dispersal characterization as the more desirable means of parameterization.


Assuntos
Aedes/fisiologia , Distribuição Animal , Controle de Mosquitos , Mosquitos Vetores/fisiologia , Aedes/genética , Animais , Variação Genética , Mosquitos Vetores/genética , Singapura , Análise Espacial , Fatores de Tempo
7.
BMC Infect Dis ; 20(1): 722, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33008314

RESUMO

BACKGROUND: Ross River virus (RRV) is responsible for the most common vector-borne disease of humans reported in Australia. The virus circulates in enzootic cycles between multiple species of mosquitoes, wildlife reservoir hosts and humans. Public health concern about RRV is increasing due to rising incidence rates in Australian urban centres, along with increased circulation in Pacific Island countries. Australia experienced its largest recorded outbreak of 9544 cases in 2015, with the majority reported from south east Queensland (SEQ). This study examined potential links between disease patterns and transmission pathways of RRV. METHODS: The spatial and temporal distribution of notified RRV cases, and associated epidemiological features in SEQ, were analysed for the period 2001-2016. This included fine-scale analysis of disease patterns across the suburbs of the capital city of Brisbane, and those of 8 adjacent Local Government Areas, and host spot analyses to identify locations with significantly high incidence. RESULTS: The mean annual incidence rate for the region was 41/100,000 with a consistent seasonal peak in cases between February and May. The highest RRV incidence was in adults aged from 30 to 64 years (mean incidence rate: 59/100,000), and females had higher incidence rates than males (mean incidence rates: 44/100,000 and 34/100,000, respectively). Spatial patterns of disease were heterogeneous between years, and there was a wide distribution of disease across both urban and rural areas of SEQ. Overall, the highest incidence rates were reported from predominantly rural suburbs to the north of Brisbane City, with significant hot spots located in peri-urban suburbs where residential, agricultural and conserved natural land use types intersect. CONCLUSIONS: Although RRV is endemic across all of SEQ, transmission is most concentrated in areas where urban and peri-urban environments intersect. The drivers of RRV transmission across rural-urban landscapes should be prioritised for further investigation, including identification of specific vectors and hosts that mediate human spillover.


Assuntos
Infecções por Alphavirus/epidemiologia , Ross River virus , Adulto , Infecções por Alphavirus/transmissão , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Queensland/epidemiologia , Saúde da População Rural , Saúde da População Urbana
8.
Malar J ; 18(1): 166, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31072359

RESUMO

BACKGROUND: Autodissemination of pyriproxyfen (PPF), i.e. co-opting adult female mosquitoes to transfer the insect growth regulator, pyriproxyfen (PPF) to their aquatic habitats has been demonstrated for Aedes and Anopheles mosquitoes. This approach, could potentially enable high coverage of aquatic mosquito habitats, including those hard to locate or reach via conventional larviciding. This study demonstrated impacts of autodissemination in crashing a stable and self-sustaining population of the malaria vector, Anopheles arabiensis under semi-field conditions in Tanzania. METHODS: Self-propagating populations of An. arabiensis were established inside large semi-field cages. Larvae fed on naturally occurring food in 20 aquatic habitats in two study chambers (9.6 × 9.6 m each), while emerging adults fed on tethered cattle. The mosquito population was monitored using emergence traps and human landing catches, each time returning captured adults into the chambers. Once the population was stable (after 23 filial generations), PPF dissemination devices (i.e. four clay pots each treated with 0.2-0.3 g PPF) were introduced into one of the chambers (treatment) and their impact monitored in parallel with untreated chamber (control). RESULTS: Daily adult emergence was similar between control and treatment chambers, with average (± SE) of 14.22 ± 0.70 and 12.62 ± 0.74 mosquitoes/trap, respectively, before treatment. Three months post-treatment, mean number of adult An. arabiensis emerging from the habitats was 5.22 ± 0.42 in control and 0.14 ± 0.04 in treatment chambers. This was equivalent to > 97% suppression in treatment chamber without re-treatment of the clay pots. Similarly, the number of mosquitoes attempting to bite volunteers inside the treatment chamber decreased to zero, 6 months post-exposure (i.e. 100% suppression). In contrast, biting rates in control rose to 53.75 ± 3.07 per volunteer over the same period. CONCLUSION: These findings demonstrate effective suppression of stable populations of malaria vectors using a small number of simple autodissemination devices, from which adult mosquitoes propagated pyriproxyfen to contaminate aquatic habitats in the system. This is the first proof that autodissemination can amplify treatment coverage and deplete malaria vector populations. Field trials are necessary to validate these results, and assess impact of autodissemination as a complementary malaria intervention.


Assuntos
Anopheles/fisiologia , Ecossistema , Controle de Mosquitos/métodos , Mosquitos Vetores/efeitos dos fármacos , Piridinas/farmacologia , Animais , Comportamento Animal , Feminino , Inseticidas , Larva/efeitos dos fármacos , Dinâmica Populacional , Tanzânia , Água
9.
Malar J ; 13: 161, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24779515

RESUMO

BACKGROUND: Malaria vector control strategies that target adult female mosquitoes are challenged by the emergence of insecticide resistance and behavioural resilience. Conventional larviciding is restricted by high operational costs and inadequate knowledge of mosquito-breeding habitats in rural settings that might be overcome by the juvenile hormone analogue, Pyriproxyfen (PPF). This study assessed the potential for Anopheles arabiensis to pick up and transfer lethal doses of PPF from contamination sites to their breeding habitats (i.e. autodissemination of PPF). METHODS: A semi-field system (SFS) with four identical separate chambers was used to evaluate PPF-treated clay pots for delivering PPF to resting adult female mosquitoes for subsequent autodissemination to artificial breeding habitats within the chambers. In each chamber, a tethered cow provided blood meals to laboratory-reared, unfed female An. arabiensis released in the SFS. In PPF-treated chambers, clay pot linings were dusted with 0.2 - 0.3 g AI PPF per pot. Pupae were removed from the artificial habitats daily, and emergence rates calculated. Impact of PPF on emergence was determined by comparing treatment with an appropriate control group. RESULTS: Mean (95% CI) adult emergence rates were (0.21 ± 0.299) and (0.95 ± 0.39) from PPF-treated and controls respectively (p < 0.0001). Laboratory bioassay of water samples from artificial habitats in these experiments resulted in significantly lower emergence rates in treated chambers (0.16 ± 0.23) compared to controls 0.97 ± 0.05) (p < 0.0001). In experiments where no mosquitoes introduced, there were no significant differences between control and treatment, indicating that transfer of PPF to breeding sites only occurred when mosquitoes were present; i.e. that autodissemination had occurred. Treatment of a single clay pot reduced adult emergence in six habitats to (0.34 ± 0.13) compared to (0.98 ± 0.02) in the controls (p < 0.0001), showing a high level of habitats coverage amplification of the autodissemination event. CONCLUSION: The study provides proof of principle for the autodissemination of PPF to breeding habitats by malaria vectors. These findings highlight the potential for this technique for outdoor control of malaria vectors and call for the testing of this technique in field trials.


Assuntos
Anopheles/efeitos dos fármacos , Ecossistema , Insetos Vetores/efeitos dos fármacos , Inseticidas/farmacologia , Controle de Mosquitos/métodos , Piridinas/farmacologia , Animais , Feminino , Tanzânia
10.
Malar J ; 13: 331, 2014 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-25150840

RESUMO

BACKGROUND: In order to sustain the gains achieved by current malaria control strategies, robust surveillance systems that monitor dynamics of vectors and their roles in malaria transmission over time are essential. This longitudinal study demonstrates the trends in malaria vector dynamics and their relative contribution to malaria transmission in hyperendemic transmission settings in Tanzania. METHODS: The study was conducted in two villages within the Kilombero Valley, in rural Tanzania for five consecutive years (2008-2012). Seventy-two houses were selected per village and each house was sampled for mosquitoes monthly using a CDC light trap. Collected mosquitoes were assessed for species identity and sporozoite infection status using PCR and ELISA, respectively. Anopheles funestus and Anopheles arabiensis susceptibility to insecticides was assessed using WHO guidelines. RESULTS: A total of 100,810 malaria vectors were collected, of which 76% were Anopheles gambiae s. l. and 24% were An. funestus. Of all An. funestus samples that amplified with PCR (n = 2,737), 97% were An. funestus s.s., 2% were Anopheles rivorulum and 1% Anopheles leesoni. Whereas for An. gambiae s.l. (n = 8,117), 93% were An. arabiensis and 7% were Anopheles gambiae s.s. The proportion of An. gambiae s.s. identified by PCR (2,924) declined from 0.2% in the year 2008 to undetectable levels in 2012. Malaria transmission intensity significantly decreased from an EIR of 78.14 infectious bites/person/year in 2008 to 35 ib/p/yr in 2011 but rebounded to 226 ib/p/yr in 2012 coinciding with an increased role of An. funestus in malaria transmission. Insecticide susceptibility tests indicated high levels of resistance in An. funestus against deltamethrin (87%), permethrin (65%), lambda cyhalothrin (74%), bendiocarb (65%), and DDT (66%). Similarly, An. arabiensis showed insecticide resistance to deltamethrin (64%), permethrin (77%) and lambda cyhalothrin (42%) in 2014. CONCLUSION: The results indicate the continuing role of An. arabiensis and the increasing importance of An. funestus in malaria transmission, and pyrethroid resistance development in both species. Complementary vector control and surveillance tools are needed that target the ecology, behaviour and insecticide resistance management of these vector species, in order to preserve the efficacy of LLINs.


Assuntos
Anopheles/crescimento & desenvolvimento , Anopheles/parasitologia , Insetos Vetores , Malária/transmissão , Animais , Anopheles/classificação , Antígenos de Protozoários/análise , DNA de Protozoário/genética , Ensaio de Imunoadsorção Enzimática , Monitoramento Epidemiológico , Humanos , Resistência a Inseticidas , Malária/epidemiologia , Plasmodium/genética , Plasmodium/isolamento & purificação , Reação em Cadeia da Polimerase , População Rural , Esporozoítos/crescimento & desenvolvimento , Tanzânia/epidemiologia
11.
Nat Rev Immunol ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570719

RESUMO

The World Health Organization recently declared a global initiative to control arboviral diseases. These are mainly caused by pathogenic flaviviruses (such as dengue, yellow fever and Zika viruses) and alphaviruses (such as chikungunya and Venezuelan equine encephalitis viruses). Vaccines represent key interventions for these viruses, with licensed human and/or veterinary vaccines being available for several members of both genera. However, a hurdle for the licensing of new vaccines is the epidemic nature of many arboviruses, which presents logistical challenges for phase III efficacy trials. Furthermore, our ability to predict or measure the post-vaccination immune responses that are sufficient for subclinical outcomes post-infection is limited. Given that arboviruses are also subject to control by the immune system of their insect vectors, several approaches are now emerging that aim to augment antiviral immunity in mosquitoes, including Wolbachia infection, transgenic mosquitoes, insect-specific viruses and paratransgenesis. In this Review, we discuss recent advances, current challenges and future prospects in exploiting both vertebrate and invertebrate immune systems for the control of flaviviral and alphaviral diseases.

12.
Sci Rep ; 14(1): 3494, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347111

RESUMO

Great advances in automated identification systems, or 'smart traps', that differentiate insect species have been made in recent years, yet demonstrations of field-ready devices under free-flight conditions remain rare. Here, we describe the results of mixed-species identification of female mosquitoes using an advanced optoacoustic smart trap design under free-flying conditions. Point-of-capture classification was assessed using mixed populations of congeneric (Aedes albopictus and Aedes aegypti) and non-congeneric (Ae. aegypti and Anopheles stephensi) container-inhabiting species of medical importance. Culex quinquefasciatus, also common in container habitats, was included as a third species in all assessments. At the aggregate level, mixed collections of non-congeneric species (Ae. aegypti, Cx. quinquefasciatus, and An. stephensi) could be classified at accuracies exceeding 90% (% error = 3.7-7.1%). Conversely, error rates increased when analysing individual replicates (mean % error = 48.6; 95% CI 8.1-68.6) representative of daily trap captures and at the aggregate level when Ae. albopictus was released in the presence of Ae. aegypti and Cx. quinquefasciatus (% error = 7.8-31.2%). These findings highlight the many challenges yet to be overcome but also the potential operational utility of optoacoustic surveillance in low diversity settings typical of urban environments.


Assuntos
Aedes , Anopheles , Culex , Animais , Feminino
13.
J Travel Med ; 30(2)2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36308439

RESUMO

BACKGROUND: Japanese encephalitis (JE) is endemic in Asia and the western Pacific. Vaccination is recommended for travellers to endemic regions, but the high cost of the vaccine is a major barrier to uptake. METHODS: A quasi-experimental, pre-post intervention clinical trial without a control group was conducted to assess the immunogenicity and safety of intradermal (ID) JE vaccine. Healthy adults (18-45 years) received one dose of 0.1 mL (20% of standard dose) ID Imojev® (JE live attenuated chimeric vaccine, Sanofi-Aventis). Adverse events following immunization (AEFIs) were recorded 10 days post-vaccination. Blood samples were collected at baseline, 4 and 8 weeks post-vaccination. Neutralizing antibodies were measured using 50% plaque reduction neutralization test (PRNT50). Seroconversion was defined as PRNT50 titre ≥10. An in vitro study was also conducted to quantify the rate of decay of vaccine potency after reconstitution. RESULTS: In total, 51 participants (72.6% females, median age 31 years), all non-reactive to JE virus at baseline were enrolled. Mild and moderate AEFIs were reported by 19.6% of participants; none required medical attention or interfered with normal daily activities. All participants seroconverted at 4 weeks (GMT 249.3; 95%CI:192.8-322.5) and remained seropositive at 8 weeks (GMT 135.5; 95%CI:104.5-175.6). Vaccine potency declined at a rate of 0.14 log plaque-forming units/0.5 mL per hour. CONCLUSIONS: In healthy adults, a single 0.1 mL ID dose of Imojev was safe and immunogenic, at least in the short term. Reconstituted vials of Imojev vaccine may not retain their potency after 6 hours. Fractional JE ID vaccination could be a cheaper yet effective alternative for short-term travellers. Further studies need to investigate the immune response in a wider age range of individuals and the long-term immunogenicity of fractional JE ID vaccines. CLINICAL TRIALS REGISTRATION: ACTRN12621000024842.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Vacinas contra Encefalite Japonesa , Adulto , Feminino , Humanos , Masculino , Anticorpos Antivirais , Encefalite Japonesa/prevenção & controle , Vacinas contra Encefalite Japonesa/efeitos adversos , Vacinas Atenuadas/efeitos adversos
14.
Pest Manag Sci ; 79(8): 2846-2861, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36942761

RESUMO

BACKGROUND: With no effective drugs or widely available vaccines, dengue control in Bangladesh is dependent on targeting the primary vector Aedes aegypti with insecticides and larval source management. Despite these interventions, the dengue burden is increasing in Bangladesh, and the country experienced its worst outbreak in 2019 with 101 354 hospitalized cases. This may be partially facilitated by the presence of intense insecticide resistance in vector populations. Here, we describe the intensity and mechanisms of resistance to insecticides commonly deployed against Ae. aegypti in Dhaka, Bangladesh. RESULTS: Dhaka Ae. aegypti colonies exhibited high-intensity resistance to pyrethroids. Using CDC bottle assays, we recorded 2-24% mortality (recorded at 24 h) to permethrin and 48-94% mortality to deltamethrin, at 10× the diagnostic dose. Bioassays conducted using insecticide-synergist combinations suggested that metabolic mechanisms were contributing to pyrethroid resistance, specifically multi-function oxidases, esterases, and glutathione S-transferases. In addition, kdr alleles were detected, with a high frequency (78-98%) of homozygotes for the V1016G mutation. A large proportion (≤ 74%) of free-flying and resting mosquitoes from Dhaka colonies survived exposure to standard applications of pyrethroid aerosols in an experimental free-flight room. Although that exposure affected the immediate host-seeking behavior of Ae. aegypti, the effect was transient in surviving mosquitoes. CONCLUSION: The intense resistance characterized in this study is likely compromising the operational effectiveness of pyrethroids against Ae. aegypti in Dhaka. Switching to alternative chemical classes may offer a medium-term solution, but ultimately a more sustainable and effective approach to controlling dengue vectors is required. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Aedes , Dengue , Inseticidas , Piretrinas , Animais , Inseticidas/farmacologia , Resistência a Inseticidas/genética , Aedes/genética , Bangladesh , Mosquitos Vetores , Piretrinas/farmacologia
15.
Biol Lett ; 8(5): 874-7, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-22647930

RESUMO

Mosquitoes, which evade contact with long-lasting insecticidal nets and indoor residual sprays, by feeding outdoors or upon animals, are primary malaria vectors in many tropical countries. They can also dominate residual transmission where high coverage of these front-line vector control measures is achieved. Complementary strategies, which extend insecticide coverage beyond houses and humans, are required to eliminate malaria transmission in most settings. The overwhelming diversity of the world's malaria transmission systems and optimal strategies for controlling them can be simply conceptualized and mapped across two-dimensional scenario space defined by the proportion of blood meals that vectors obtain from humans and the proportion of human exposure to them which occurs indoors.


Assuntos
Malária/prevenção & controle , Malária/transmissão , Animais , Anopheles , Controle de Doenças Transmissíveis/métodos , Culicidae , Comportamento Alimentar , Humanos , Inseticidas/farmacologia , Modelos Estatísticos , Modelos Teóricos , Controle de Mosquitos/métodos , Dinâmica Populacional , Especificidade da Espécie
16.
J Med Entomol ; 49(3): 606-13, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22679868

RESUMO

Pyriproxyfen is an insect growth regulator with juvenile hormone-like activity that has potential uses for dipterans that are difficult to manage with conventional insecticides, such as house flies (Musca domestica L.). The objectives of this study were to determine the efficacy of this insect growth regulator against house flies using variety of delivery systems and target life stages, including an evaluation of the potential for autodissemination by female flies to larval development sites. Adult female house flies exposed to filter paper (3.75% active ingredient) or sugar treated with pyriproxyfen (0.01-0.1%) produced significantly fewer F1 pupae than untreated flies. Adult emergence from pupae was unaffected. In contrast, treatment of larval rearing medium with 0.35 ml/cm2 of a 12 mg pyriproxyfen/liter preparation had no effect on the number of pupae developing from eggs but markedly inhibited adult emergence from those pupae. There was little difference in susceptibility between an insecticide-susceptible and a wild strain of house fly. The LC50 for inhibiting fly emergence of dust formulations in diatomaceous earth incorporating commercial pyriproxyfen products ranged from 8 to 26 mg/liter, with little difference among products. Compared with untreated flies, significantly fewer pupae were produced at concentrations > 0.5% and no adults were produced at concentrations > 0.05% pyriproxyfen. When gravid females were exposed for 1 h to treated fabric (6 mg pyriproxyfen/cm2) and allowed to oviposit in rearing media containing eggs, sufficient pyriproxyfen was autodisseminated to reduce adult emergence from those eggs by > 99%. Intermittent contact with treated fabric over 2 d reduced adult emergence by 63-76%.


Assuntos
Inseticidas/administração & dosagem , Hormônios Juvenis/administração & dosagem , Muscidae/efeitos dos fármacos , Piridinas/administração & dosagem , Animais , Feminino , Larva/efeitos dos fármacos
17.
Proc Natl Acad Sci U S A ; 106(28): 11530-4, 2009 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-19561295

RESUMO

Vector control is a key means of combating mosquito-borne diseases and the only tool available for tackling the transmission of dengue, a disease for which no vaccine, prophylaxis, or therapeutant currently exists. The most effective mosquito control methods include a variety of insecticidal tools that target adults or juveniles. Their successful implementation depends on impacting the largest proportion of the vector population possible. We demonstrate a control strategy that dramatically improves the efficiency with which high coverage of aquatic mosquito habitats can be achieved. The method exploits adult mosquitoes as vehicles of insecticide transfer by harnessing their fundamental behaviors to disseminate a juvenile hormone analogue (JHA) between resting and oviposition sites. A series of field trials undertaken in an Amazon city (Iquitos, Peru) showed that the placement of JHA dissemination stations in just 3-5% of the available resting area resulted in almost complete coverage of sentinel aquatic habitats. More than control mortality occurred in 95-100% of the larval cohorts of Aedes aegypti developing at those sites. Overall reductions in adult emergence of 42-98% were achieved during the trials. A deterministic simulation model predicts amplifications in coverage consistent with our observations and highlights the importance of the residual activity of the insecticide for this technique.


Assuntos
Aedes/efeitos dos fármacos , Dengue/prevenção & controle , Ecossistema , Insetos Vetores/efeitos dos fármacos , Hormônios Juvenis/toxicidade , Metamorfose Biológica/efeitos dos fármacos , Controle de Mosquitos/métodos , Aedes/ultraestrutura , Animais , Simulação por Computador , Inseticidas , Microscopia Eletrônica de Varredura , Modelos Biológicos , Peru
18.
Commun Dis Intell Q Rep ; 36(2): E180-5, 2012 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-23186217

RESUMO

This report describes the largest outbreak of Plasmodium falciparum malaria in the Torres Strait for more than 25 years. It details factors that may have contributed to the outbreak, the public health response and implications for the broader region. Eight cases of locally-acquired falciparum malaria occurred on Saibai and Dauan islands during March and April 2011. Including imports, there were 17 P. falciparum notifications between February and May 2011. Three cases of pure P. vivax malaria that might have been locally acquired have been omitted from this report. Malaria is endemic on the nearby coast of Papua New Guinea (PNG), and regularly imported to the Torres Strait where a competent vector exists in sufficient numbers to transmit the disease to the local population. The most common malaria vectors in northern Australia and Torres Strait are the Anopheles farauti complex. Factors contributing to the outbreak may include an increase in travel between the outer islands and PNG, inadequate local vector control and late or missed diagnoses of malaria. Outbreak management involved intensive case finding and treatment, vector control and health promotion. Reducing the risk of future outbreaks requires studies of vector behaviour, ecology and management, health promotion, improvements to protective infrastructure, and clinical guideline revision. Further malaria outbreaks are likely in the Torres Strait and elsewhere in northern Australia. It is important to maintain awareness and be prepared to respond rapidly.


Assuntos
Anopheles/fisiologia , Surtos de Doenças , Promoção da Saúde , Insetos Vetores/fisiologia , Malária Falciparum/epidemiologia , Plasmodium falciparum/fisiologia , Adolescente , Adulto , Animais , Austrália/epidemiologia , Pré-Escolar , Feminino , Humanos , Lactente , Ilhas , Malária Falciparum/diagnóstico , Malária Falciparum/transmissão , Masculino , Pessoa de Meia-Idade , Controle de Mosquitos , Papua Nova Guiné/epidemiologia , Saúde Pública , Viagem , Adulto Jovem
19.
J Med Entomol ; 59(1): 384-389, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34748002

RESUMO

Commercially available 'smart' trap technology has not yet been widely used to evaluate interventions against mosquitoes despite potential benefits. These benefits include the ability to capture data continuously at fine temporal scales without the human resources usually required for conventional trap deployment. Here, we used a commercially available smart trap (BG-Counter, Biogents) to assess the efficacy of an insecticide barrier treatment (BiFlex AquaMax) in reducing mosquito nuisance in a logistically challenging coastal environment in Queensland, Australia. Adoption of smart trap technology permitted us to conduct a uniquely detailed assessment of barrier treatments, ultimately allowing us to demonstrate significant reductions in mosquito collections from treated properties over all temporal scales. On average, daily mosquito collections from treated properties were reduced by 74.6% for the duration of the post-treatment period (56 d). This observation was supported by similar reductions (73.3%) in mosquito collections across all hours of the day. It was further found that underlying mosquito population dynamics were comparable across all study sites as evidenced by the high congruence in daily collection patterns among traps (Pearson r = 0.64). Despite limitations related to trap costs and replication, the results demonstrate that smart traps offer new precision tools for the assessment of barrier treatments and other mosquito control interventions.


Assuntos
Inseticidas/administração & dosagem , Controle de Mosquitos/métodos , Aedes/efeitos dos fármacos , Animais , Austrália , Meio Ambiente , Humanos , Dinâmica Populacional , Queensland
20.
Viruses ; 14(4)2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35458433

RESUMO

Dengue is an arboviral disease caused by dengue virus (DENV), leading to approximately 25,000 deaths/year and with over 40% of the world's population at risk. Increased international travel and trade, poorly regulated urban expansion, and warming global temperatures have expanded the geographic range and incidence of the virus in recent decades. This study used phylogenetic and selection pressure analyses to investigate trends in DENV evolution, using whole genome coding sequences from publicly available databases alongside newly sequenced isolates collected between 1963-1997 from Southeast Asia and the Pacific. Results revealed very similar phylogenetic relationships when using the envelope gene and the whole genome coding sequences. Although DENV evolution is predominantly driven by negative selection, a number of amino acid sites undergoing positive selection were found across the genome, with the majority located in the envelope and NS5 genes. Some genotypes appear to be diversifying faster than others within each serotype. The results from this research improve our understanding of DENV evolution, with implications for disease control efforts such as Wolbachia-based biocontrol and vaccine design.


Assuntos
Vírus da Dengue , Dengue , Wolbachia , Evolução Molecular , Genoma Viral , Genótipo , Humanos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA