RESUMO
Increasing direct human pressures on the marine environment, coupled with climate-driven changes, is a concern to marine ecosystems globally. This requires the development and monitoring of ecosystem indicators for effective management and adaptation planning. Plankton lifeforms (broad functional groups) are sensitive indicators of marine environmental change and can provide a simplified view of plankton biodiversity, building an understanding of change in lower trophic levels. Here, we visualize regional-scale multi-decadal trends in six key plankton lifeforms as well as their correlative relationships with sea surface temperature (SST). For the first time, we collate trends across multiple disparate surveys, comparing the spatially and temporally extensive Continuous Plankton Recorder (CPR) survey (offshore) with multiple long-term fixed station-based time-series (inshore) from around the UK coastline. These analyses of plankton lifeforms showed profound long-term changes, which were coherent across large spatial scales. For example, 'diatom' and 'meroplankton' lifeforms showed strong alignment between surveys and coherent regional-scale trends, with the 1998-2017 decadal average abundance of meroplankton being 2.3 times that of 1958-1967 for CPR samples in the North Sea. This major, shelf-wide increase in meroplankton correlated with increasing SSTs, and contrasted with a general decrease in holoplankton (dominated by small copepods), indicating a changing balance of benthic and pelagic fauna. Likewise, inshore-offshore gradients in dinoflagellate trends, with contemporary increases inshore contrasting with multi-decadal decreases offshore (approx. 75% lower decadal mean abundance), urgently require the identification of causal mechanisms. Our lifeform approach allows the collation of many different data types and time-series across the NW European shelf, providing a crucial evidence base for informing ecosystem-based management, and the development of regional adaptation plans.
Assuntos
Ecossistema , Plâncton , Animais , Biodiversidade , Clima , Mar do NorteRESUMO
This data compilation synthesizes 36 static environmental and spatial variables, and temporally explicit modeled estimates of three major disturbances to coral cover on the Great Barrier Reef (GBR): (1) coral bleaching, (2) tropical cyclones, and (3) outbreaks of the coral-eating crown-of-thorns starfish Acanthaster cf. solaris. Data are provided on a standardized grid (0.01° × 0.01° ~ 1 × 1 km) for reef locations along the GBR, containing 15,928 pixels and excluding the northernmost sections (<12° S) where empirical data were sparse. This compilation provides a consistent and high-resolution characterization of the abiotic environment and disturbance regimes for GBR reef locations at a fine spatial scale to be used in the development of complex ecosystem models. Static estimates of environmental variables (e.g., depth, bed shear stress, average temperature, temperature variation) originally developed by the Commonwealth of Australia's Environment Research Facility (CERF) Marine Biodiversity Hub were provided by Geoscience Australia. Annual (1985-2017) disturbance estimates were either interpolated from empirical data (A. cf. solaris), predicted from proxy indicators (e.g., degree heating weeks [DHW] as a proxy for bleaching severity), or explicitly modeled (e.g., wave height model for each cyclone). This data set synthesizes some of the most recent advances in remote sensing and modeling of environmental conditions on the GBR; yet it is not exhaustive and we highlight areas that should be expanded through future research. The characterization of abiotic and disturbance regimes presented here represent an essential tool for the development of complex regional scale models of the GBR; preventing redundancy between working groups and promoting collaboration, innovation, and consistency. When using the data set, we kindly request that you cite this article and/or the articles cited in the reference section, recognizing the work that went into compiling the data together and the original authors' willingness to make it publicly available.
RESUMO
An operational method to assess trends in marine water composition and ecosystem health during flood periods has been developed for the Great Barrier Reef (GBR), Queensland, Australia. This method integrates satellite water colour data with field water quality and ecosystem monitoring data and involves the classification of Moderate-Resolution Imaging Spectroradiometer (MODIS satellite) pixels into six distinct water bodies using a "wet season" colour scale developed specifically for the GBR. Using this information, several monitoring and reporting products have been derived and are operationally implemented into a long-term water quality monitoring program for the GBR. However, MODIS sensors are aging and a long-term monitoring solution is needed. This study reviewed the water colour monitoring products currently used in the GBR. It tested the feasibility to transition these methods from historical MODIS satellite imagery to the new Sentinel-3 satellite of the European Space Agency and from the wet season colour scale to the historical Forel-Ule colour scale, using a freely-distributed Forel Ule (FU) Satellite Toolbox. Monitoring products derived from both satellites and colour scales showed very similar patterns across two case study regions of the GBR, the Wet Tropics and Burdekin marine regions, over the 2017-18 wet season. The results obtained in this study highlighted the potential of using FU Sentinel-3 imagery for the mapping of GBR marine water bodies, including flood conditions. Furthermore, the operational monitoring products and frameworks developed for the GBR are likely to provide valuable foundations for analysis of FU Sentinel-3 data in the future. Such satellite water colour datasets and frameworks will be instrumental to better understand the impact of floods and reduced water clarity on marine ecosystems, as well as to support water quality management and facilitate catchment management policy in the GBR and worldwide.
Assuntos
Inundações , Qualidade da Água , Austrália , Cor , Recifes de Corais , Ecossistema , Monitoramento Ambiental , Queensland , ÁguaRESUMO
Australia's Great Barrier Reef (GBR) is under pressure from a suite of stressors including cyclones, crown-of-thorns starfish (COTS), nutrients from river run-off and warming events that drive mass coral bleaching. Two key questions are: how vulnerable will the GBR be to future environmental scenarios, and to what extent can local management actions lower vulnerability in the face of climate change? To address these questions, we use a simple empirical and mechanistic coral model to explore six scenarios that represent plausible combinations of climate change projections (from four Representative Concentration Pathways, RCPs), cyclones and local stressors. Projections (2017-2050) indicate significant potential for coral recovery in the near-term, relative to current state, followed by climate-driven decline. Under a scenario of unmitigated emissions (RCP8.5) and business-as-usual management of local stressors, mean coral cover on the GBR is predicted to recover over the next decade and then rapidly decline to only 3% by year 2050. In contrast, a scenario of strong carbon mitigation (RCP2.6) and improved water quality, predicts significant coral recovery over the next two decades, followed by a relatively modest climate-driven decline that sustained coral cover above 26% by 2050. In an analysis of the impacts of cumulative stressors on coral cover relative to potential coral cover in the absence of such impacts, we found that GBR-wide reef performance will decline 27%-74% depending on the scenario. Up to 66% of performance loss is attributable to local stressors. The potential for management to reduce vulnerability, measured here as the mean number of years coral cover can be kept above 30%, is spatially variable. Management strategies that alleviate cumulative impacts have the potential to reduce the vulnerability of some midshelf reefs in the central GBR by 83%, but only if combined with strong mitigation of carbon emissions.
Assuntos
Antozoários , Mudança Climática , Recifes de Corais , Qualidade da Água , Tempo (Meteorologia) , Animais , Austrália , PressãoRESUMO
Optically active water quality components (OAC) transported by flood plumes to nearshore marine environments affect light levels. The definition of minimum OAC concentrations that must be maintained to sustain sufficient light levels for conservation of light-dependant coastal ecosystems exposed to flood waters is necessary to guide management actions in adjacent catchments. In this study, a framework for defining OAC target concentrations using empirical light attenuation models is proposed and applied to the Wet Tropics region of the Great Barrier Reef (GBR) (Queensland, Australia). This framework comprises several steps: (i) light attenuation (Kd(PAR)) profiles and OAC measurements, including coloured dissolved organic matter (CDOM), chlorophyll-a (Chl-a) and suspended particulate matter (SPM) concentrations collected in flood waters; (ii) empirical light attenuation models used to define the contribution of CDOM, Chl-a and SPM to the light attenuation, and; (iii) translation of empirical models into manageable OAC target concentrations specific for wet season conditions. Results showed that (i) Kd(PAR) variability in the Wet Tropics flood waters is driven primarily by SPM and CDOM, with a lower contribution from Chl-a (r2â¯=â¯0.5, pâ¯<â¯0.01), (ii) the relative contributions of each OAC varies across the different water bodies existing along flood waters and strongest Kd(PAR) predictions were achieved when the in-situ data were clustered into water bodies with similar satellite-derived colour characteristics ('brownish flood waters', r2â¯=â¯0.8, pâ¯<â¯0.01, 'greenish flood waters', r2â¯=â¯0.5, pâ¯<â¯0.01), and (iii) that Kd(PAR) simulations are sensitive to the angular distribution of the light field in the clearest flood water bodies. Empirical models developed were used to translate regional light guidelines (established for the GBR) into manageable OAC target concentrations. Preliminary results suggested that a 90th percentile SPM concentration of 11.4â¯mgâ¯L-1 should be maintained during the wet season to sustain favourable light levels for Wet Tropics coral reefs and seagrass ecosystems exposed to 'brownish' flood waters. Additional data will be collected to validate the light attenuation models and the wet season target concentration which in future will be incorporated into wider catchment modelling efforts to improve coastal water quality in the Wet Tropics and the GBR.
Assuntos
Recifes de Corais , Ecossistema , Qualidade da Água , Austrália , Monitoramento Ambiental , Queensland , Estações do AnoRESUMO
NEW FINDINGS: What is the central question of this study? Does crosstalk exist between leptin and interleukin-6 in colonic enteric neurons, and is this a contributory factor in gastrointestinal dysfunction associated with irritable bowel syndrome? What is the main finding and its importance? Leptin ameliorates the prosecretory and prokinetic effects of the pro-inflammatory cytokine interleukin-6 on rat colon. Leptin also suppresses the neurostimulatory effects of irritable bowel syndrome plasma, which has elevated concentrations of interleukin-6, on enteric neurons. This may indicate a regulatory role for leptin in immune-mediated bowel dysfunction. In addition to its role in regulating energy homeostasis, the adipokine leptin modifies gastrointestinal (GI) function. Indeed, leptin-resistant obese humans and leptin-deficient obese mice exhibit altered GI motility. In the functional GI disorder irritable bowel syndrome (IBS), circulating leptin concentrations are reported to differ from those of healthy control subjects. Additionally, IBS patients display altered cytokine profiles, including elevated circulating concentrations of the pro-inflammatory cytokine interleukin-6 (IL-6), which bears structural homology and similarities in intracellular signalling to leptin. This study aimed to investigate interactions between leptin and IL-6 in colonic neurons and their possible contribution to IBS pathophysiology. The functional effects of leptin and IL-6 on colonic contractility and absorptosecretory function were assessed in organ baths and Ussing chambers in Sprague-Dawley rat colon. Calcium imaging and immunohistochemical techniques were used to investigate the neural regulation of GI function by these signalling molecules. Our findings provide a neuromodulatory role for leptin in submucosal neurons, where it inhibited the stimulatory effects of IL-6. Functionally, this translated to suppression of IL-6-evoked potentiation of veratridine-induced secretory currents. Leptin also attenuated IL-6-induced colonic contractions, although it had little direct effect on myenteric neurons. Calcium responses evoked by IBS plasma in both myenteric and submucosal neurons were also suppressed by leptin, possibly through interactions with IL-6, which is elevated in IBS plasma. As leptin has the capacity to ameliorate the neurostimulatory effects of soluble mediators in IBS plasma and modulated IL-6-evoked changes in bowel function, leptin may have a role in immune-mediated bowel dysfunction in IBS patients.
Assuntos
Colo/efeitos dos fármacos , Colo/metabolismo , Citocinas/metabolismo , Interleucina-6/metabolismo , Leptina/farmacologia , Adolescente , Adulto , Idoso , Animais , Motilidade Gastrointestinal/efeitos dos fármacos , Humanos , Síndrome do Intestino Irritável/metabolismo , Masculino , Pessoa de Meia-Idade , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Adulto JovemRESUMO
Near-shore marine environments are increasingly subjected to reduced water quality, and their ability to withstand it is critical to their persistence. The potential role marine reserves may play in mitigating the effects of reduced water quality has received little attention. We investigated the spatial and temporal variability in live coral and macro-algal cover and water quality during moderate and major flooding events of the Fitzroy River within the Keppel Bay region of the Great Barrier Reef Marine Park from 2007 to 2013. We used 7 years of remote sensing data on water quality and data from long-term monitoring of coral reefs to quantify exposure of coral reefs to flood plumes. We used a distance linear model to partition the contribution of abiotic and biotic factors, including zoning, as drivers of the observed changes in coral and macro-algae cover. Moderate flood plumes from 2007 to 2009 did not affect coral cover on reefs in the Keppel Islands, suggesting the reef has intrinsic resistance against short-term exposure to reduced water quality. However, from 2009 to 2013, live coral cover declined by â¼ 50% following several weeks of exposure to turbid, low salinity water from major flood plume events in 2011 and subsequent moderate events in 2012 and 2013. Although the flooding events in 2012 and 2013 were smaller than the flooding events between 2007 to 2009, the ability of the reefs to withstand these moderate floods was lost, as evidenced by a â¼ 20% decline in coral cover between 2011 to 2013. Although zoning (no-take reserve or fished) was identified a significant driver of coral cover, we recorded consistently lower coral cover on reserve reefs than on fished reefs throughout the study period and significantly lower cover in 2011. Our findings suggest that even reefs with an inherent resistance to reduced water quality are not able to withstand repeated disturbance events. The limitations of reserves in mitigating the effects of reduced water quality on near-shore coral reefs underscores the importance of integrated management approaches that combine effective land-based management with networks of no-take reserves.
Assuntos
Conservação dos Recursos Naturais , Recifes de Corais , Qualidade da Água , Distribuição Animal , Animais , Antozoários/fisiologia , Inundações , Queensland , Alga Marinha/fisiologiaRESUMO
River plumes are the major transport mechanism for nutrients, sediments and other land-based pollutants into the Great Barrier Reef (GBR, Australia) and are a major threat to coastal and marine ecosystems such as coral reefs and seagrass beds. Understanding the spatial extent, frequency of occurrence, loads and ecological impacts of land-based pollutants discharged through river plumes is essential to drive catchment management actions. In this study, a framework to produce river plume risk maps for seagrass and coral ecosystems, using supervised classification of MODIS Level 2 (L2) satellite products, is presented. Based on relevant L2 thresholds, river plumes are classified into Primary, Secondary, and Tertiary water types, which represent distinct water quality (WQ) parameters concentrations and combinations. Annual water type maps are produced over three wet seasons (2010-2013) as a case of study. These maps provide a synoptic basis to assess the likelihood and magnitude of the risk of reduced coastal WQ associated with the river discharge (river plume risk) and in combination with sound knowledge of the regional ecosystems can serve as the basis to assess potential ecological impacts for coastal and marine GBR ecosystems. The methods described herein provide relevant and easily reproducible large-scale information for river plume risk assessment and management.
Assuntos
Recifes de Corais , Rios , Imagens de Satélites , Animais , Antozoários , Austrália , Ecossistema , Magnoliopsida , Risco , Água , Poluentes Químicos da Água , Qualidade da ÁguaRESUMO
Anthropogenic pressures such as climate change and nutrient pollution are causing rapid changes in the marine environment. The relative influence of drivers of change on the plankton community remains uncertain, and this uncertainty is limiting our understanding of sustainable levels of human pressures. Plankton are the primary energy resource in marine food webs and respond rapidly to environmental changes, representing useful indicators of shifts in ecosystem structure and function. Categorising plankton into broad groups with similar characteristics, known as "lifeforms", can be useful for understanding ecological patterns related to environmental change and for assessing the state of pelagic habitats in accordance with the EU Marine Strategy Framework Directive and the OSPAR Commission, which mandates protection of the North-East Atlantic. We analysed 29 years of Continuous Plankton Recorder data (1993-2021) from the North-East Atlantic to examine how trends in plankton lifeform abundance changed in relation to one another and across gradients of environmental change associated with human pressures. Random forest models predicted between 57 % and 80 % of the variability in lifeform abundance, based on data not used to train the models. Observed variability was mainly explained by trends in other lifeforms, with mainly positively correlated trends, indicating bottom-up control and/or shared responses to environmental variability were prevalent. Longitude, bathymetry, mixed layer depth, the nitrogen-tophosphorus ratio, and temperature were also significant predictors. However, contrasting influences of environmental drivers were detected. For example, small copepod abundance increased in warmer conditions whereas meroplankton, large copepods and fish larvae either decreased or were unchanged. Our findings highlight recent changes in stratification, reflected by variation in mixed layer depth, and imbalanced nutrient ratios are affecting multiple lifeforms, impacting the North-East Atlantic plankton community. To achieve environmental improvements in North-East Atlantic pelagic habitats, it is crucial that we continue to address climate change and reduce nutrient pollution.
Assuntos
Mudança Climática , Monitoramento Ambiental , Plâncton , Oceano Atlântico , Ecossistema , Cadeia AlimentarRESUMO
Increased loads of land-based pollutants are a major threat to coastal-marine ecosystems. Identifying the affected marine areas and the scale of influence on ecosystems is critical to assess the impacts of degraded water quality and to inform planning for catchment management and marine conservation. Studies using remotely-sensed data have contributed to our understanding of the occurrence and influence of river plumes, and to our ability to assess exposure of marine ecosystems to land-based pollutants. However, refinement of plume modeling techniques is required to improve risk assessments. We developed a novel, complementary, approach to model exposure of coastal-marine ecosystems to land-based pollutants. We used supervised classification of MODIS-Aqua true-color satellite imagery to map the extent of plumes and to qualitatively assess the dispersal of pollutants in plumes. We used the Great Barrier Reef (GBR), the world's largest coral reef system, to test our approach. We combined frequency of plume occurrence with spatially distributed loads (based on a cost-distance function) to create maps of exposure to suspended sediment and dissolved inorganic nitrogen. We then compared annual exposure maps (2007-2011) to assess inter-annual variability in the exposure of coral reefs and seagrass beds to these pollutants. We found this method useful to map plumes and qualitatively assess exposure to land-based pollutants. We observed inter-annual variation in exposure of ecosystems to pollutants in the GBR, stressing the need to incorporate a temporal component into plume exposure/risk models. Our study contributes to our understanding of plume spatial-temporal dynamics of the GBR and offers a method that can also be applied to monitor exposure of coastal-marine ecosystems to plumes and explore their ecological influences.
Assuntos
Monitoramento Ambiental/métodos , Processamento de Imagem Assistida por Computador , Tecnologia de Sensoriamento Remoto/métodos , Astronave , Poluentes Químicos da Água/análise , Qualidade da Água , Recifes de Corais , Ecossistema , Estuários , Inundações , Modelos Teóricos , Oceanos e Mares , Queensland , Fatores de TempoRESUMO
Marine coastal waters of Bahrain are under pressure due to human activities and climate change. We used marine monitoring data (2005-2020) from 27 sites to establish baseline conditions and develop standards for assessments of water quality. Five hydrodynamic regions were identified: Oyster Beds, North, West, East, East (Coastal). Data from Oyster Beds sites, likely to be less impacted by human activities, were used to determine baseline conditions. For most parameters, candidate thresholds were based on 50 % and 100 % variation from baseline and 95th percentiles. Comparisons of data against different thresholds showed different outcomes. Overall, results indicate good water quality, with potential concerns in East (Coastal). Trend analyses showed some significant trends in all regions: downward (favourable) for some parameters (e.g. turbidity: North) and upward for others (e.g. nitrate: Oyster Beds, East and East (Coastal)). Future work requires greater understanding around optimum guidelines that protect and mitigate any adverse ecological impacts.
Assuntos
Ostreidae , Qualidade da Água , Animais , Humanos , Monitoramento Ambiental/métodos , Barein , Meio AmbienteRESUMO
Plankton form the base of marine food webs, making them important indicators of ecosystem status. Changes in the abundance of plankton functional groups, or lifeforms, can affect higher trophic levels and can indicate important shifts in ecosystem functioning. Here, we extend this knowledge by combining data from Continuous Plankton Recorder and fixed-point stations to provide the most comprehensive analysis of plankton time-series for the North-East Atlantic and North-West European shelf to date. We analysed 24 phytoplankton and zooplankton datasets from 15 research institutions to map 60-year abundance trends for 8 planktonic lifeforms. Most lifeforms decreased in abundance (e.g. dinoflagellates: -5 %, holoplankton: -7 % decade-1), except for meroplankton, which increased 12 % decade-1, reflecting widespread changes in large-scale and localised processes. K-means clustering of assessment units according to abundance trends revealed largely opposing trend direction between shelf and oceanic regions for most lifeforms, with North Sea areas characterised by increasing coastal abundance, while abundance decreased in North-East Atlantic areas. Individual taxa comprising each phytoplankton lifeform exhibited similar abundance trends, whereas taxa grouped within zooplankton lifeforms were more variable. These regional contrasts are counterintuitive, since the North Sea which has undergone major warming, changes in nutrients, and past fisheries perturbation has changed far less, from phytoplankton to fish larvae, as compared to the more slowly warming North-East Atlantic with lower nutrient supply and fishing pressure. This more remote oceanic region has shown a major and worrying decline in the traditional food web. Although the causal mechanisms remain unclear, declining abundance of key planktonic lifeforms in the North-East Atlantic, including diatoms and copepods, are a cause of major concern for the future of food webs and should provide a red flag to politicians and policymakers about the prioritisation of future management and adaptation measures required to ensure future sustainable use of the marine ecosystem.
Assuntos
Ecossistema , Plâncton , Animais , Mar do Norte , Cadeia Alimentar , Fitoplâncton , Zooplâncton , Dinâmica PopulacionalRESUMO
Marine ecosystems across the world's largest ocean - the Pacific Ocean - are being increasingly affected by stressors such as pollution, overfishing, ocean acidification, coastal development and warming events coupled with rising sea levels and increasing frequency of extreme weather. These anthropogenic-driven stressors, which operate cumulatively at varying spatial and temporal scales, are leading to ongoing and pervasive degradation of many marine ecosystems in the Pacific Island region. The effects of global warming and ocean acidification threaten much of the region and impact on the socio-cultural, environmental, economic and human health components of many Pacific Island nations. Simultaneously, resilience to climate change is being reduced as systems are overburdened by other stressors, such as marine and land-based pollution and unsustainable fishing. Consequently, it is important to understand the vulnerability of this region to future environmental scenarios and determine to what extent management actions can help protect, and rebuild ecosystem resilience and maintain ecosystem service provision. This Special Issue of papers explores many of these pressures through case studies across the Pacific Island region, and the impacts of individual and cumulative pressures on the condition, resilience and survival of ecosystems and the communities that depend on them. The papers represent original work from across the tropical Pacific oceanscape, an area that includes 22 Pacific Island countries and territories plus Hawaii and the Philippines. The 39 papers within provide insights on anthropogenic pressures and habitat responses at local, national, and regional scales. The themes range from coastal water quality and human health, assessment of status and trends for marine habitats (e.g. seagrass and coral reefs), and the interaction of local pressures (pollution, overfishing) with increasing temperatures and climate variability. Studies within the Special Issue highlight how local actions, monitoring, tourism values, management, policy and incentives can encourage adaptation to anthropogenic impacts. Conclusions identify possible solutions to support sustainable and harmonious environment and social systems in the unique Pacific Island oceanscape.
Assuntos
Conservação dos Recursos Naturais , Ecossistema , Mudança Climática , Pesqueiros , Havaí , Humanos , Concentração de Íons de Hidrogênio , Ilhas do Pacífico , Oceano Pacífico , Filipinas , Água do MarRESUMO
The resilience of coastal ecosystems and communities to poor environmental and health outcomes is threatened by cumulative anthropogenic pressures. In Kiribati, a developing Pacific Island country where human activities are closely connected with the ocean, both people and environment are particularly vulnerable to coastal pollution. We present a survey of environmental and human health water quality parameters around urban South Tarawa, and an overview of their impacts on the semi-enclosed atoll. Tarawa has significant water quality issues and decisions to guide improvements are hindered by a persistent lack of appropriate and sufficient observations. Our snapshot assessment identifies highest risk locations related to chronic focused and diffuse pollution inputs, and where mixing and dilution with ocean water is restricted. We demonstrate the importance of monitoring in the context of rapidly changing pressures. Our recommendations are relevant to other atoll ecosystems where land-based activities and ocean health are tightly interlinked.
Assuntos
Ecossistema , Qualidade da Água , Monitoramento Ambiental , Humanos , Micronésia , Ilhas do PacíficoRESUMO
The Second World War in the Pacific has left a legacy of over 3800 wrecks on the ocean floor. These wrecks contain thousands of tons of oil and pose a risk to the marine environment. Estimates of current corrosion rates show many wrecks are at risk of structural collapse. However, the scale of threat posed by potentially polluting wrecks (PPW) to coastal ecosystems in the Pacific is largely unknown, due to the lack of data to inform risk. This paper presents a strategy aimed to prioritise, manage, and mitigate negative effects of oil spills posed by PPW in the Pacific, using an example in Chuuk Lagoon. Wrecks are assessed and prioritised by means of risk characterisation. Wrecks are surveyed using photogrammetry to assess hull integrity. Finally, recommendations are made for the production of bespoke management plans and risk reduction strategies that work towards safeguarding marine ecosystems and the livelihoods of coastal communities.
Assuntos
Ecossistema , Poluição por Petróleo , Oceano Pacífico , II Guerra MundialRESUMO
Nearshore deterioration of water quality in Pacific coastal waters is a growing problem, associated with increasing urban and industrial sewage discharges, and agricultural runoff. Published water quality studies in the Pacific region are limited in both number and scope, making it difficult to resolve the extent of the issue or quantify the variability of water quality across Pacific islands and countries. This study collected water quality measurements over three years in the coastal waters around the Island of Efate (Vanuatu) with majority of work carried out in Port Vila, its capital. Port Vila is the key urban centre for Vanuatu where the increasing population and pollution inputs are placing substantial pressure on the coastal environment. Highest concentrations of dissolved nutrients and suspended sediments were measured adjacent or near the urban drains that enter the coastal areas along the capital's seafront, highlighting many of the issues around anthropogenic inputs are linked to the increasing urbanisation in Port Vila Bay. We provide baseline data that explores variability of coastal water quality and these types of datasets for Pacific islands are a first step towards facilitating development of long-term monitoring programmes and informing coastal zone management decision making.
Assuntos
Urbanização , Qualidade da Água , Agricultura , Monitoramento Ambiental , Ilhas do Pacífico , VanuatuRESUMO
Threats from climate change and other human pressures have led to widespread concern for the future of Australia's Great Barrier Reef (GBR). Resilience of GBR reefs will be determined by their ability to resist disturbances and to recover from coral loss, generating intense interest in management actions that can moderate these processes. Here we quantify the effect of environmental and human drivers on the resilience of southern and central GBR reefs over the past two decades. Using a composite water quality index, we find that while reefs exposed to poor water quality are more resistant to coral bleaching, they recover from disturbance more slowly and are more susceptible to outbreaks of crown-of-thorns starfish and coral disease-with a net negative impact on recovery and long-term hard coral cover. Given these conditions, we find that 6-17% improvement in water quality will be necessary to bring recovery rates in line with projected increases in coral bleaching among contemporary inshore and mid-shelf reefs. However, such reductions are unlikely to buffer projected bleaching effects among outer-shelf GBR reefs dominated by fast-growing, thermally sensitive corals, demonstrating practical limits to local management of the GBR against the effects of global warming.
Assuntos
Recifes de Corais , Qualidade da Água , Austrália , Mudança ClimáticaRESUMO
Corals of the Great Barrier Reef (GBR) have declined over the past 30 years. While reef state depends on the balance between disturbance and recovery, most studies have focused on the effects of disturbance on reef decline. We show that coral recovery rates across the GBR declined by an average of 84% between 1992 and 2010. Recovery was variable: Some key coral types had close to zero recovery by the end of that period, whereas some reefs exhibited high recovery. Our results indicate that coral recovery is sensitive to chronic but manageable pressures, and is suppressed for several years following acute disturbances. Loss of recovery capacity was partly explained by the cumulative effects of chronic pressures including water quality, warming, and sublethal effects of acute disturbances (cyclones, outbreaks of crown-of-thorns starfish, and coral bleaching). Modeled projections indicate that recovery rates can respond rapidly to reductions in acute and chronic stressors, a result that is consistent with fast recovery observed on some reefs in the central and southern GBR since the end of the study period. A combination of local management actions to reduce chronic disturbances and global action to limit the effect of climate change is urgently required to sustain GBR coral cover and diversity.
Assuntos
Antozoários/crescimento & desenvolvimento , Recifes de Corais , Animais , Austrália , Mudança Climática , Conservação dos Recursos Naturais , Oceanos e Mares , Qualidade da ÁguaRESUMO
Dissolved inorganic nitrogen (DIN) runoff from Great Barrier Reef (GBR) catchments is a threat to coral reef health. Several initiatives address this threat, including the Australian Government's Reef 2050 Plan. However, environmental decision makers face an unsolved prioritization challenge: determining the exposure of reefs to DIN from individual rivers. Here, we use virtual river tracers embedded within a GBR-wide hydrodynamic model to resolve the spatial and temporal dynamics of 16 individual river plumes during three wet seasons (2011-2013). We then used in-situ DIN observations to calibrate tracer values, allowing us to estimate the contribution of each river to reef-scale DIN exposure during each season. Results indicate that the Burdekin, Fitzroy, Tully and Daintree rivers pose the greatest DIN exposure risk to coral reefs during the three seasons examined. Results were used to demonstrate a decision support framework that combines reef exposure risk with river dominance (threat diversity).