RESUMO
DNA Topoisomerase IIα (Top2A) is a nuclear enzyme that is a cancer drug target, and there is interest in identifying novel sites on the enzyme to inhibit cancer cells more selectively and to reduce off-target toxicity. The C-terminal domain (CTD) is one potential target, but it is an intrinsically disordered domain, which prevents structural analysis. Therefore, we set out to analyze the sequence of Top2A from 105 species using bioinformatic analysis, including the PSICalc algorithm, Shannon entropy analysis, and other approaches. Our results demonstrate that large (10th-order) interdependent clusters are found including non-proximal positions across the major domains of Top2A. Further, CTD-specific clusters of the third, fourth, and fifth order, including positions that had been previously analyzed via mutation and biochemical assays, were identified. Some of these clusters coincided with positions that, when mutated, either increased or decreased relaxation activity. Finally, sites of low Shannon entropy (i.e., low variation in amino acids at a given site) were identified and mapped as key positions in the CTD. Included in the low-entropy sites are phosphorylation sites and charged positions. Together, these results help to build a clearer picture of the critical positions in the CTD and provide potential sites/regions for further analysis.
Assuntos
Biologia Computacional , DNA Topoisomerases Tipo II , Domínios Proteicos , DNA Topoisomerases Tipo II/metabolismo , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/química , Biologia Computacional/métodos , Humanos , Entropia , Sequência de Aminoácidos , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/química , FosforilaçãoRESUMO
Topoisomerases, common targets for anti-cancer therapeutics, are crucial enzymes for DNA replication, transcription, and many other aspects of DNA metabolism. The potential anti-cancer effects of thiosemicarbazones (TSC) and metal-TSC complexes have been demonstrated to target several biological processes, including DNA metabolism. Human topoisomerases were discovered among the molecular targets for TSCs, and metal-chelated TSCs specifically displayed significant inhibition of topoisomerase II. The processes by which metal-TSCs or TSCs inhibit topoisomerases are still being studied. In this brief review, we summarize the TSCs and metal-TSCs that inhibit various types of human topoisomerases, and we note some of the key unanswered questions regarding this interesting class of diverse compounds.
Assuntos
Antineoplásicos , Complexos de Coordenação , Tiossemicarbazonas , Humanos , Complexos de Coordenação/farmacologia , DNA Topoisomerases Tipo II/metabolismo , Cobre/farmacologia , DNA , Tiossemicarbazonas/farmacologia , Antineoplásicos/farmacologiaRESUMO
Etoposide is a widely-used anticancer agent that targets human type II topoisomerases. Evidence suggests that metabolism of etoposide in myeloid progenitor cells is associated with translocations involved in leukemia development. Previous studies suggest halogenation at the C-2' position of etoposide reduces metabolism. Halogens were introduced into the C-2' position by electrophilic aromatic halogenation onto etoposide (ETOP, 1), podophyllotoxin (PPT, 2), and 4-dimethylepipodophyllotoxin (DMEP, 3), and to bridge the gap of knowledge regarding the activity of these metabolically stable analogs. Five halogenated analogs (6-10) were synthesized. Analogs 8-10 displayed variable ability to inhibit DNA relaxation. Analog 9 was the only analog to show concentration-dependent enhancement of Top2-mediated DNA cleavage. Dose response assay results indicated that 8 and 10 were most effective at decreasing the viability of HCT-116 and A549 cancer cell lines in culture. Flow cytometry with 8 and 10 in HCT-116 cells provide evidence of sub-G1 cell populations indicative of apoptosis. Taken together, these results indicate C-2' halogenation of etoposide and its precursors, although metabolically stable, decreases overall activity relative to etoposide.
Assuntos
Antineoplásicos/farmacologia , DNA Topoisomerases Tipo II/metabolismo , Etoposídeo/farmacologia , Podofilotoxina/farmacologia , Inibidores da Topoisomerase II/farmacologia , Células A549 , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Clivagem do DNA , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Etoposídeo/síntese química , Etoposídeo/química , Células HCT116 , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Plasmídeos/efeitos dos fármacos , Podofilotoxina/síntese química , Podofilotoxina/química , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/químicaRESUMO
Topoisomerase II is a nuclear enzyme involved in the maintenance of DNA and is an effective anticancer drug target. However, several clinical topoisomerase II-targeted agents display significant off-target toxicities and adverse events. Thus, it is important to continue characterizing compounds with activity against topoisomerase II. We previously analyzed α-(N)-heterocyclic thiosemicarbazone copper(II) complexes against human topoisomerase IIα (TOP2A), but humans also express topoisomerase IIß (TOP2B), which has distinct functional roles. Therefore, we examined two α-(N)-heterocyclic thiosemicarbazone copper [Cu(II)] complexes for activity against TOP2B in a purified system. The Cu(II) complexes, Cu(APY-ETSC)Cl and Cu(BZP-ETSC)Cl, were examined using plasmid DNA cleavage, supercoiled DNA relaxation, enzyme inactivation, protein cross-linking, DNA ligation, and ATP hydrolysis assays with TOP2B to determine whether these compounds act similarly against both enzymes. Both of the Cu(II) thiosemicarbazone (Cu-TSC) complexes we tested disrupted the function of TOP2B in a way similar to the effect on TOP2A. In particular, TOP2B DNA cleavage activity is increased in the presence of these compounds, while the relaxation and ATPase activities are inhibited. Further, both Cu-TSCs stabilize the N-terminal DNA clamp of TOP2A and TOP2B and rapidly inactivate TOP2B when the compounds are present before DNA. Our data provide evidence that the Cu-TSC complexes we tested utilize a similar mechanism against both isoforms of the enzyme. This mechanism may involve interaction with the ATPase domain of TOP2A and TOP2B outside of the ATP binding pocket. Additionally, these data support a model of TOP2 function where the ATPase domain communicates with the DNA cleavage/ligation domain.
Assuntos
Compostos Organometálicos/farmacologia , Compostos Organometálicos/toxicidade , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/toxicidade , Cobre/química , Cobre/farmacologia , Clivagem do DNA/efeitos dos fármacos , DNA Topoisomerases Tipo II/metabolismo , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Humanos , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Tiossemicarbazonas/síntese química , Tiossemicarbazonas/química , Tiossemicarbazonas/farmacologia , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/químicaRESUMO
Our previous research has shown that α-(N)-heterocyclic thiosemicarbazone (TSC) metal complexes inhibit human topoisomerase IIα (TopoIIα), while the ligands without metals do not. To find out the structural elements of TSC that are important for inhibiting TopoIIα, we have synthesized two series of α-(N)-heterocyclic TSCs with various substrate ring segments, side chain substitutions, and metal ions, and we have examined their activities in TopoIIα-mediated plasmid DNA relaxation and cleavage assays. Our goal is to explore the structure-activity relationship of α-(N)-heterocyclic TSCs and their effect on TopoIIα. Our data suggest that, similar to Cu(II)-TSCs, Pd(II)-TSC complexes inhibit plasmid DNA relaxation mediated by TopoIIα. In TopoIIα-mediated plasmid DNA cleavage assays, the Cu(II)-TSC complexes induce higher levels of DNA cleavage than their Pd(II) counterparts. The Cu(II)-TSC complexes with methyl, ethyl, and tert-butyl substitutions are slightly more effective than those with benzyl and phenyl groups. The α-(N)-heterocyclic ring substrates of the TSCs, including benzoylpyridine, acetylpyridine, and acetylthiazole, do not exhibit a significant difference in TopoIIα-mediated DNA cleavage. Our data suggest that the metal ion of TSC complexes plays a predominant role in inhibition of TopoIIα, the side chain substitution of the terminal nitrogen plays a secondary role, while the substrate ring segment has the least effect. Our molecular modeling data support the biochemical data, which together provide a mechanism by which Cu(II)-TSC complexes stabilize TopoIIα-mediated cleavage complexes.
Assuntos
Cobre/farmacologia , DNA Topoisomerases Tipo II/metabolismo , Compostos Heterocíclicos/farmacologia , Paládio/farmacologia , Tiossemicarbazonas/farmacologia , Inibidores da Topoisomerase II/farmacologia , Cobre/química , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Humanos , Íons/química , Íons/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Paládio/química , Tiossemicarbazonas/síntese química , Tiossemicarbazonas/química , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/químicaRESUMO
Topoisomerase II is a critical enzyme in replication, transcription, and the regulation of chromatin topology. Several anticancer agents target topoisomerases in order to disrupt cell growth. Cannabidiol is a major non-euphoriant, pharmacologically active component of cannabis. Previously, we examined the cannabidiol derivative HU-331 in order to characterize the mechanism of the compound against topoisomerase IIα. In this current work, we explore whether cannabidiol (CBD) impacts topoisomerase II activity, and we additionally examine the activity of these compounds against topoisomerase IIß. CBD does not appear to strongly inhibit DNA relaxation and is not a poison of topoisomerase II DNA cleavage. However, oxidation of CBD allows this compound to inhibit DNA relaxation by topoisomerase IIα and ß without poisoning DNA cleavage. Additionally, we found that oxidized CBD, similar to HU-331, inhibits ATP hydrolysis and can result in inactivation of topoisomerase IIα and ß. We also determined that oxidized CBD and HU-331 are both able to stabilize the N-terminal clamp of topoisomerase II. Taken together, we conclude that while CBD does not have significant activity against topoisomerase II, both oxidized CBD and HU-331 are active against both isoforms of topoisomerase II. We hypothesize that oxidized CBD and HU-331 act against the enzyme through interaction with the N-terminal ATPase domain. According to the model we propose, topoisomerase II inactivation may result from a decrease in the ability of the enzyme to bind to DNA when the compound is bound to the N-terminus.
Assuntos
Canabidiol/análogos & derivados , Canabidiol/farmacologia , DNA/efeitos dos fármacos , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores , Inibidores da Topoisomerase II/farmacologia , Canabidiol/química , DNA/metabolismo , Clivagem do DNA , DNA Topoisomerases Tipo II/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Oxirredução , Plasmídeos/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Inibidores da Topoisomerase II/químicaRESUMO
Topoisomerase II is an essential nuclear enzyme involved in regulating DNA topology to facilitate replication and cell division. Disruption of topoisomerase II function by chemotherapeutic agents is in use as an effective strategy to fight cancer. Etoposide is an anticancer therapeutic that disrupts the catalytic cycle of topoisomerase II and stabilizes enzyme-bound DNA strand breaks. Etoposide is metabolized into several species including active quinone and catechol metabolites. Our previous studies have explored some of the details of how these compounds act against topoisomerase II. In our present study, we extend those analyses by examining several effects of etoposide quinone on topoisomerase IIα including whether the quinone impacts ATP hydrolysis, DNA ligation, cleavage complex persistence, and enzyme/DNA binding. Our results demonstrate that the quinone inhibits relaxation at 100-fold lower levels of drug when compared to that of etoposide. Further, the quinone inhibits ATP hydrolysis by topoisomerase IIα. The quinone does appear to stabilize single-strand breaks similar to etoposide suggesting a traditional poisoning mechanism. However, there is minimal difference in cleavage complex persistence in the presence of etoposide or etoposide quinone. In contrast to etoposide, we find that etoposide quinone blocks enzyme/DNA binding, which provides an explanation for previous data showing the ability of the quinone to inactivate the enzyme over time. Finally, etoposide quinone is able to stabilize the N-terminal protein clamp implying an interaction between the compound and this portion of the enzyme. Taken together, the evidence supports a two-mechanism model for the effect of the quinone on topoisomerase II: (1) interfacial poison and (2) covalent poison that interacts with the N-terminal clamp and impacts the binding of DNA.
Assuntos
Antígenos de Neoplasias/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Biológicos , Quinonas/metabolismo , Sítios de Ligação/efeitos dos fármacos , Etoposídeo/química , Etoposídeo/metabolismo , Etoposídeo/farmacologia , Humanos , Estrutura Molecular , Quinonas/química , Quinonas/farmacologiaRESUMO
Type II DNA topoisomerases resolve topological knots and tangles in DNA that result from routine cellular processes and are effective targets for anticancer therapeutics. To this end, thiosemicarbazones have been identified as having the ability to kill cancer cells from several cell lines. Literature evidence suggests that at least some thiosemicarbazones have an impact on topoisomerase II activity. However, the mechanism is not as clearly defined. Therefore, we set out to analyze the activity of four α-(N)-heterocyclic thiosemicarbazone compounds against topoisomerase IIα. The ligands, acetylpyridine-ethylthiosemicarbazone (APY-ETSC) and acetylpyrazine-methylthiosemicarbazone (APZ-MTSC), and their copper(II) [Cu(II)] complexes [Cu(APY-ETSC)Cl] and [Cu(APZ-MTSC)Cl] were examined for the ability to impact the catalytic cycle of human topoisomerase IIα. Both [Cu(APY-ETSC)Cl] and [Cu(APZ-MTSC)Cl] were more effective at inhibiting DNA relaxation compared with the ligands alone. Further, both [Cu(APY-ETSC)Cl] and [Cu(APZ-MTSC)Cl] increased double-stranded DNA cleavage levels without inhibiting topoisomerase IIα-mediated DNA ligation. The Cu(II) complexes inactivate enzyme activity over time suggesting a critical interaction with the enzyme. Additionally, we found that the Cu(II)-thiosemicarbazone complexes do not significantly impact DNA cleavage by the catalytic core of the enzyme. This evidence is supported by the fact that both [Cu(APY-ETSC)Cl] and [Cu(APZ-MTSC)Cl], and to a lesser extent the ligands, inhibit topoisomerase IIα-mediated ATP hydrolysis. Based upon kinetic analysis, the Cu(II) complexes appear to be noncompetitive inhibitors of the ATPase domain of topoisomerase IIα. Taken together, our results provide evidence that Cu(II) complexes of α-(N)-heterocyclic thiosemicarbazones catalytically inhibit the enzyme through the ATPase domain but also promote double-stranded DNA cleavage by the enzyme.
Assuntos
Cobre/química , Cobre/farmacologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Tiossemicarbazonas/química , Tiossemicarbazonas/farmacologia , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologia , Antígenos de Neoplasias/metabolismo , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Clivagem do DNA/efeitos dos fármacos , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , HumanosRESUMO
Type II topoisomerases are required for the management of DNA tangles and supercoils, and are targets of clinical antibiotics and anti-cancer agents. These enzymes catalyse the ATP-dependent passage of one DNA duplex (the transport or T-segment) through a transient, double-stranded break in another (the gate or G-segment), navigating DNA through the protein using a set of dissociable internal interfaces, or 'gates'. For more than 20 years, it has been established that a pair of dimer-related tyrosines, together with divalent cations, catalyse G-segment cleavage. Recent efforts have proposed that strand scission relies on a 'two-metal mechanism', a ubiquitous biochemical strategy that supports vital cellular processes ranging from DNA synthesis to RNA self-splicing. Here we present the structure of the DNA-binding and cleavage core of Saccharomyces cerevisiae topoisomerase II covalently linked to DNA through its active-site tyrosine at 2.5A resolution, revealing for the first time the organization of a cleavage-competent type II topoisomerase configuration. Unexpectedly, metal-soaking experiments indicate that cleavage is catalysed by a novel variation of the classic two-metal approach. Comparative analyses extend this scheme to explain how distantly-related type IA topoisomerases cleave single-stranded DNA, unifying the cleavage mechanisms for these two essential enzyme families. The structure also highlights a hitherto undiscovered allosteric relay that actuates a molecular 'trapdoor' to prevent subunit dissociation during cleavage. This connection illustrates how an indispensable chromosome-disentangling machine auto-regulates DNA breakage to prevent the aberrant formation of mutagenic and cytotoxic genomic lesions.
Assuntos
DNA Topoisomerases Tipo II/química , DNA Topoisomerases Tipo II/metabolismo , DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/metabolismo , DNA/química , DNA/metabolismo , Saccharomyces cerevisiae/enzimologia , Regulação Alostérica , Sequência de Bases , Domínio Catalítico , Cristalografia por Raios X , DNA/genética , Cinética , Modelos Moleculares , Dados de Sequência Molecular , TirosinaRESUMO
Topoisomerase II resolves intrinsic topological problems of double-stranded DNA. As part of its essential cellular functions, the enzyme generates DNA breaks, but the regulation of this potentially dangerous process is not well understood. Here we report single-molecule fluorescence experiments that reveal a previously uncharacterized sequence of events during DNA cleavage by topoisomerase II: nonspecific DNA binding, sequence-specific DNA bending, and stochastic cleavage of DNA. We have identified unexpected structural roles of Mg(2+) ions coordinated in the TOPRIM (topoisomerase-primase) domain in inducing cleavage-competent DNA bending. A break at one scissile bond dramatically stabilized DNA bending, explaining how two scission events in opposing strands can be coordinated to achieve a high probability of double-stranded cleavage. Clamping of the protein N-gate greatly enhanced the rate and degree of DNA bending, resulting in a significant stimulation of the DNA cleavage and opening reactions. Our data strongly suggest that the accurate cleavage of DNA by topoisomerase II is regulated through a tight coordination with DNA bending.
Assuntos
Antígenos de Neoplasias/metabolismo , Clivagem do DNA/efeitos dos fármacos , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/química , DNA/metabolismo , Magnésio/farmacologia , Conformação de Ácido Nucleico/efeitos dos fármacos , Aminoácidos Acídicos/metabolismo , Sequência de Bases , Cátions Bivalentes/farmacologia , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Humanos , Dados de Sequência MolecularRESUMO
Coordination between the N-terminal gate and the catalytic core of topoisomerase II allows the proper capture, cleavage, and transport of DNA during the catalytic cycle. Because the activities of these domains are tightly linked, it has been difficult to discern their individual contributions to enzyme-DNA interactions and drug mechanism. To further address the roles of these domains, we analyzed the activity of the catalytic core of human topoisomerase IIα. The catalytic core and the wild-type enzyme both maintained higher levels of cleavage with negatively (as compared to positively) supercoiled plasmid, indicating that the ability to distinguish supercoil handedness is embedded within the catalytic core. However, the catalytic core alone displayed little ability to cleave DNA substrates that did not intrinsically provide the enzyme with a transport segment (i.e., substrates that did not contain crossovers). Finally, in contrast to interfacial topoisomerase II poisons, covalent poisons did not enhance DNA cleavage mediated by the catalytic core. This distinction allowed us to further characterize the mechanism of etoposide quinone, a drug metabolite that functions primarily as a covalent poison. Etoposide quinone retained some ability to enhance DNA cleavage mediated by the catalytic core, indicating that it still can function as an interfacial poison. These results further define the distinct contributions of the N-terminal gate and the catalytic core to topoisomerase II function. The catalytic core senses the handedness of DNA supercoils during cleavage, while the N-terminal gate is critical for capturing the transport segment and for the activity of covalent poisons.
Assuntos
Antígenos de Neoplasias/metabolismo , DNA Topoisomerases Tipo II/metabolismo , DNA Circular/metabolismo , DNA Super-Helicoidal/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Modelos Moleculares , Inibidores da Topoisomerase II/farmacologia , Antígenos de Neoplasias/química , Antígenos de Neoplasias/genética , Benzoquinonas/química , Benzoquinonas/metabolismo , Benzoquinonas/farmacologia , Sítios de Ligação , Biocatálise/efeitos dos fármacos , Domínio Catalítico , Clivagem do DNA/efeitos dos fármacos , DNA Topoisomerases Tipo II/química , DNA Topoisomerases Tipo II/genética , DNA Circular/química , DNA Super-Helicoidal/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Etoposídeo/química , Etoposídeo/metabolismo , Etoposídeo/farmacologia , Humanos , Cinética , Conformação Molecular , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Estereoisomerismo , Especificidade por Substrato , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/metabolismoRESUMO
Etoposide is a topoisomerase II poison that is utilized to treat a broad spectrum of human cancers. Despite its wide clinical use, 2-3% of patients treated with etoposide eventually develop treatment-related acute myeloid leukemias (t-AMLs) characterized by rearrangements of the MLL gene. The molecular basis underlying the development of these t-AMLs is not well understood; however, previous studies have implicated etoposide metabolites (i.e., etoposide quinone) and topoisomerase IIß in the leukemogenic process. Although interactions between etoposide quinone and topoisomerase IIα have been characterized, the effects of the drug metabolite on the activity of human topoisomerase IIß have not been reported. Thus, we examined the ability of etoposide quinone to poison human topoisomerase IIß. The quinone induced ~4 times more enzyme-mediated DNA cleavage than did the parent drug. Furthermore, the potency of etoposide quinone was ~2 times greater against topoisomerase IIß than it was against topoisomerase IIα, and the drug reacted ~2-4 times faster with the ß isoform. Etoposide quinone induced a higher ratio of double- to single-stranded breaks than etoposide, and its activity was less dependent on ATP. Whereas etoposide acts as an interfacial topoisomerase II poison, etoposide quinone displayed all of the hallmarks of a covalent poison: the activity of the metabolite was abolished by reducing agents, and the compound inactivated topoisomerase IIß when it was incubated with the enzyme prior to the addition of DNA. These results are consistent with the hypothesis that etoposide quinone contributes to etoposide-related leukemogenesis through an interaction with topoisomerase IIß.
Assuntos
DNA Topoisomerases Tipo II , Proteínas de Ligação a DNA , Etoposídeo/química , Leucemia/etnologia , Proteínas de Neoplasias , Quinonas/química , Inibidores da Topoisomerase II/química , DNA/química , DNA/metabolismo , DNA Topoisomerases Tipo II/química , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/química , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/química , Inibidores da Topoisomerase II/metabolismoRESUMO
Topoisomerases are essential enzymes that are involved in DNA metabolism. Topoisomerase II generates transient DNA strand breaks that are stabilized by anticancer drugs, such as doxorubicin, causing an accumulation of DNA damage. However, doxorubicin causes cardiac toxicity and, like etoposide and other topoisomerase II-targeted agents, can induce DNA damage, resulting in secondary cancers. The cannabinoid quinone HU-331 has been identified as a potential anticancer drug that demonstrates more potency in cancer cells with less off-target toxicity than that of doxorubicin. Reports indicate that HU-331 does not promote cell death via apoptosis, cell cycle arrest, caspase activation, or DNA strand breaks. However, the precise mechanism of action is poorly understood. We employed biochemical assays to study the mechanism of action of HU-331 against purified topoisomerase IIα. These assays examined DNA binding, cleavage, ligation, relaxation, and ATPase activities of topoisomerase IIα. Our results demonstrate that HU-331 inhibits topoisomerase IIα-mediated DNA relaxation at micromolar levels. We find that HU-331 does not induce DNA strand breaks in vitro. When added prior to the DNA substrate, HU-331 blocks DNA cleavage and relaxation activities of topoisomerase IIα in a redox-sensitive manner. The action of HU-331 can be blocked, but not reversed, by the presence of dithiothreitol. Our results also show that HU-331 inhibits the ATPase activity of topoisomerase IIα using a noncompetitive mechanism. Preliminary binding studies also indicate that HU-331 decreases the ability of topoisomerase IIα to bind DNA. In summary, HU-331 inhibits relaxation activity without poisoning DNA cleavage. This action is sensitive to reducing agents and appears to involve noncompetitive inhibition of the ATPase activity and possibly inhibition of DNA binding. These studies provide a promising foundation for the exploration of HU-331 as a catalytic inhibitor of topoisomerase IIα.
Assuntos
Canabidiol/análogos & derivados , Proteínas de Ligação a DNA/antagonistas & inibidores , Inibidores da Topoisomerase II/farmacologia , Antígenos de Neoplasias/metabolismo , Canabidiol/farmacologia , Catálise , DNA/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismoRESUMO
The intersection of religion and science often elicits polarizing views among scientists, though approximately half of American scientists identify as religious. Mounting evidence also supports the role of spirituality in comprehensive patient care. The purpose of this study was to explore the religiosity of faculty who teach in the anatomical sciences at U.S. colleges and universities. Surveys were administered to anatomists through two professional societies. Two-thirds (64.9%, 74/114) of respondents identified as religious, 26.3% (30/114) as atheist, and 8.8% (10/114) as agnostic. Most respondents (64.9%, 74/114) disagreed with the statement, "There is no place for religion and science to intersect." Approximately one in three respondents expressed concern that sharing/disclosing their religious beliefs would negatively affect the perceptions of colleagues (32.5%, 37/114) and students (28.9%, 33/114) toward them. Faculty at faith-based institutions were more open to disclosing their beliefs (p = 0.045), and highly religious individuals were more concerned (p = 0.001). Fewer than one-fifth of respondents 17.5% (20/114) personally experienced mistreatment or discrimination within academic settings due to their religious beliefs. Most respondents held politically liberal-leaning views (71.0%, 76/107). Highly religious individuals were more likely to be politically conservative (p < 0.001). Overall, this study demonstrates that the number of anatomists who identify as religious may be higher than that of other biological disciplines and that mistreatment due to religious views remains a challenge for some in the profession. Continued dialogue regarding the role of religion in professional identity expression may be an important step in mitigating religion-focused mistreatment and discrimination in academic settings.
RESUMO
Topoisomerase II regulates DNA topology by generating transient double-stranded breaks. The anticancer drug etoposide targets topoisomerase II and is associated with the formation of secondary leukemias in patients. The quinone and catechol metabolites of etoposide may contribute to strand breaks that trigger leukemic translocations. To further analyze the characteristics of etoposide metabolites, we extend our previous analysis of etoposide quinone to the catechol. We demonstrate that the catechol is â¼2-3-fold more potent than etoposide and under oxidative reaction conditions induces high levels of double-stranded DNA cleavage. These results support a role for etoposide catechol in contributing to therapy-induced DNA damage.
Assuntos
Catecóis/química , DNA Topoisomerases Tipo II/metabolismo , Etoposídeo/química , Catecóis/metabolismo , Catecóis/toxicidade , Citocromo P-450 CYP3A/metabolismo , DNA/química , DNA/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , DNA Topoisomerases Tipo II/química , Etoposídeo/metabolismo , Etoposídeo/toxicidade , Humanos , OxirreduçãoRESUMO
Motivation: AlphaFold has been a major advance in predicting protein structure, but still leaves the problem of determining which sub-molecular components of a protein are essential for it to carry out its function within the cell. Direct coupling analysis predicts two- and three-amino acid contacts, but there may be essential interdependencies that are not proximal within the 3D structure. The problem to be addressed is to design a computational method that locates and ranks essential non-proximal interdependencies within a protein involving five or more amino acids, using large, multiple sequence alignments (MSAs) for both globular and intrinsically unstructured proteins. Results: We developed PSICalc (Protein Subdomain Interdependency Calculator), a laptop-friendly, pattern-discovery, bioinformatics software tool that analyzes large MSAs for both structured and unstructured proteins, locates both proximal and non-proximal inter-dependent sites, and clusters them into pairwise (second order), third-order and higher-order clusters using a k-modes approach, and provides ranked results within minutes. To aid in visualizing these interdependencies, we developed a graphical user interface that displays these subdomain relationships as a polytree graph. To demonstrate, we provide examples of both proximal and non-proximal interdependencies documented for eukaryotic topoisomerase II including between the unstructured C-terminal domain and the N-terminal domain. Availability and implementation: https://github.com/jdeweeselab/psicalc-package. Supplementary information: Supplementary data are available at Bioinformatics Advances online.
RESUMO
Etoposide is a topoisomerase II poison that is used to treat a variety of human cancers. Unfortunately, 2-3% of patients treated with etoposide develop treatment-related leukemias characterized by 11q23 chromosomal rearrangements. The molecular basis for etoposide-induced leukemogenesis is not understood but is associated with enzyme-mediated DNA cleavage. Etoposide is metabolized by CYP3A4 to etoposide catechol, which can be further oxidized to etoposide quinone. A CYP3A4 variant is associated with a lower risk of etoposide-related leukemias, suggesting that etoposide metabolites may be involved in leukemogenesis. Although etoposide acts at the enzyme-DNA interface, several quinones poison topoisomerase II via redox-dependent protein adduction. The effects of etoposide quinone on topoisomerase IIα-mediated DNA cleavage have been examined previously. Although findings suggest that the activity of the quinone is slightly greater than that of etoposide, these studies were carried out in the presence of significant levels of reducing agents (which should reduce etoposide quinone to the catechol). Therefore, we examined the ability of etoposide quinone to poison human topoisomerase IIα in the absence of reducing agents. Under these conditions, etoposide quinone was â¼5-fold more active than etoposide at inducing enzyme-mediated DNA cleavage. Consistent with other redox-dependent poisons, etoposide quinone inactivated topoisomerase IIα when incubated with the protein prior to DNA and lost activity in the presence of dithiothreitol. Unlike etoposide, the quinone metabolite did not require ATP for maximal activity and induced a high ratio of double-stranded DNA breaks. Our results support the hypothesis that etoposide quinone contributes to etoposide-related leukemogenesis.
Assuntos
Antígenos de Neoplasias/metabolismo , Benzoquinonas/metabolismo , Benzoquinonas/toxicidade , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Etoposídeo/metabolismo , Etoposídeo/toxicidade , Antígenos de Neoplasias/toxicidade , Catecóis/metabolismo , Adutos de DNA/efeitos dos fármacos , Adutos de DNA/toxicidade , Dano ao DNA/efeitos dos fármacos , DNA Topoisomerases Tipo II/toxicidade , Proteínas de Ligação a DNA/toxicidade , Ditiotreitol/toxicidade , Estabilidade Enzimática/efeitos dos fármacos , Etoposídeo/química , Humanos , Leucemia Mieloide Aguda/induzido quimicamente , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/genética , Oxirredução , Substâncias Redutoras/farmacologiaRESUMO
Topoisomerase II is an essential enzyme that is required for virtually every process that requires movement of DNA within the nucleus or the opening of the double helix. This enzyme helps to regulate DNA under- and overwinding and removes knots and tangles from the genetic material. In order to carry out its critical physiological functions, topoisomerase II generates transient double-stranded breaks in DNA. Consequently, while necessary for cell survival, the enzyme also has the capacity to fragment the genome. The DNA cleavage/ligation reaction of topoisomerase II is the target for some of the most successful anticancer drugs currently in clinical use. However, this same reaction also is believed to trigger chromosomal translocations that are associated with specific types of leukemia. This article will familiarize the reader with the DNA cleavage/ligation reaction of topoisomerase II and other aspects of its catalytic cycle. In addition, it will discuss the interaction of the enzyme with anticancer drugs and the mechanisms by which these agents increase levels of topoisomerase II-generated DNA strand breaks. Finally, it will describe dietary and environmental agents that enhance DNA cleavage mediated by the enzyme.
Assuntos
DNA Topoisomerases Tipo II/química , DNA/química , Antineoplásicos/química , Antineoplásicos/farmacologia , DNA/metabolismo , Clivagem do DNA , Dano ao DNA , DNA Topoisomerases Tipo II/metabolismo , Dieta , Humanos , Leucemia/enzimologia , Quinonas/intoxicação , Inibidores da Topoisomerase IIRESUMO
Cannabidiol and related cannabinoids are under exploration for the treatment of a number of disease states. The cannabinoid-quinone HU-331 has been studied as a potential anticancer therapeutic. Previous studies provide evidence that HU-331 displays anticancer activity without some of the known adverse events associated with traditional anticancer agents. In this brief review, we will explore the literature related to the activity of HU-331 in purified systems, cancer cell lines, and animal models. For example, HU-331 displays inhibitory activity against human topoisomerase IIα, a known anticancer drug target. Further, in multiple cell model systems, the IC50 value for HU-331 was less than 10 µM. In addition, mouse model systems demonstrate the ability of HU-331 to shrink tumors without causing cardiotoxicity. In addition, we will briefly review the activity of some key analogs and derivatives of HU-331 for various disease states. Taken together, the published studies support further exploration of HU-331 for the treatment of cancer and possibly other disease states.