Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(23): 11141-11146, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31110008

RESUMO

Solar flares-bursts of high-energy radiation responsible for severe space weather effects-are a consequence of the occasional destabilization of magnetic fields rooted in active regions (ARs). The complexity of AR evolution is a barrier to a comprehensive understanding of flaring processes and accurate prediction. Although machine learning (ML) has been used to improve flare predictions, the potential for revealing precursors and associated physics has been underexploited. Here, we train ML algorithms to classify between vector-magnetic-field observations from flaring ARs, producing at least one M-/X-class flare, and nonflaring ARs. Analysis of magnetic-field observations accurately classified by the machine presents statistical evidence for (i) ARs persisting in flare-productive states-characterized by AR area-for days, before and after M- and X-class flare events; (ii) systematic preflare buildup of free energy in the form of electric currents, suggesting that the associated subsurface magnetic field is twisted; and (iii) intensification of Maxwell stresses in the corona above newly emerging ARs, days before first flares. These results provide insights into flare physics and improving flare forecasting.

2.
Sci Rep ; 14(1): 3029, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321247

RESUMO

Remote sensing technologies are experiencing a surge in adoption for monitoring Earth's environment, demanding more efficient and scalable methods for image analysis. This paper presents a new approach for the Emirates Mars Mission (Hope probe); A serverless computing architecture designed to analyze images of Martian auroras, a key aspect in understanding the Martian atmosphere. Harnessing the power of OpenCV and machine learning algorithms, our architecture offers image classification, object detection, and segmentation in a swift and cost-effective manner. Leveraging the scalability and elasticity of cloud computing, this innovative system is capable of managing high volumes of image data, adapting to fluctuating workloads. This technology, applied to the study of Martian auroras within the HOPE Mission, not only solves a complex problem but also paves the way for future applications in the broad field of remote sensing.

3.
Phys Rev E ; 95(4-1): 043306, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28505847

RESUMO

We analyze a linear lattice Boltzmann (LB) formulation for simulation of linear acoustic wave propagation in heterogeneous media. We employ the single-relaxation-time Bhatnagar-Gross-Krook as well as the general multirelaxation-time collision operators. By calculating the dispersion relation for various 2D lattices, we show that the D2Q5 lattice is the most suitable model for the linear acoustic problem. We also implement a grid-refinement algorithm for the LB scheme to simulate waves propagating in a heterogeneous medium with velocity contrasts. Our results show that the LB scheme performance is comparable to the classical second-order finite-difference schemes. Given its efficiency for parallel computation, the LB method can be a cost effective tool for the simulation of linear acoustic waves in complex geometries and multiphase media.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA