Assuntos
COVID-19 , Neoplasias , Anticorpos Antivirais , Vacina BNT162 , Humanos , Neoplasias/tratamento farmacológicoAssuntos
COVID-19 , Neoplasias , Vacinas , Vacina BNT162 , COVID-19/prevenção & controle , Humanos , Neoplasias/tratamento farmacológico , SARS-CoV-2RESUMO
A precision medicine approach has been successfully applied in medical oncology for the treatment of non-small-cell lung cancer (NSCLC) through the identification of targetable driver molecular aberrations; activating mutations of epidermal growth factor receptor (EGFR) are the most common. Osimertinib, a third-generation, wild-type sparing, irreversible EGFR tyrosine kinase inhibitor (TKI), originally showed a striking activity after progression to first- and second-generation EGFR-TKIs when T790M resistance mutation was identified. Thereafter, upfront use of osimertinib became the standard of care based on overall survival benefit over first-generation TKIs erlotinib and gefitinib as reported in the FLAURA trial. For patients progressing on osimertinib, identification of resistance mechanisms is crucial to develop novel targeted therapeutic approaches. Moreover, innovative drugs or combination therapies are being developed for cases in which a specific resistance mechanism is not identifiable. In this review, the post-osimertinib treatment options for EGFR-mutated NSCLC are analyzed, with an outlook to ongoing clinical trials. An algorithm to guide clinicians in managing progression on osimertinib is proposed.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Acrilamidas , Compostos de Anilina , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Progressão da Doença , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêuticoRESUMO
BACKGROUND: To stratify the prognosis of patients with programmed cell death-ligand 1 (PD-L1) ≥ 50% advanced non-small-cell lung cancer (aNSCLC) treated with first-line immunotherapy. METHODS: Baseline clinical prognostic factors, the neutrophil-to-lymphocyte ratio (NLR), PD-L1 tumour cell expression level, lactate dehydrogenase (LDH) and their combination were investigated by a retrospective analysis of 784 patients divided between statistically powered training (n = 201) and validation (n = 583) cohorts. Cut-offs were explored by receiver operating characteristic (ROC) curves and a risk model built with validated independent factors by multivariate analysis. RESULTS: NLR < 4 was a significant prognostic factor in both cohorts (P < 0.001). It represented 53% of patients in the validation cohort, with 1-year overall survival (OS) of 76.6% versus 44.8% with NLR > 4, in the validation series. The addition of PD-L1 ≥ 80% (21% of patients) or LDH < 252 U/l (25%) to NLR < 4 did not result in better 1-year OS (of 72.6% and 74.1%, respectively, in the validation cohort). Eastern Cooperative Oncology Group (ECOG) performance status (PS) of 2 [P < 0.001, hazard ratio (HR) 2.04], pretreatment steroids (P < 0.001, HR 1.67) and NLR < 4 (P < 0.001, HR 2.29) resulted in independent prognostic factors. A risk model with these three factors, namely, the lung immuno-oncology prognostic score (LIPS)-3, accurately stratified three OS risk-validated categories of patients: favourable (0 risk factors, 40%, 1-year OS of 78.2% in the whole series), intermediate (1 or 2 risk factors, 54%, 1-year OS 53.8%) and poor (>2 risk factors, 5%, 1-year OS 10.7%) prognosis. CONCLUSIONS: We advocate the use of LIPS-3 as an easy-to-assess and inexpensive adjuvant prognostic tool for patients with PD-L1 ≥ 50% aNSCLC.