Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Adv Exp Med Biol ; 1379: 553-590, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35761007

RESUMO

In recent years, we have seen major advances in the field of liquid biopsy and its implementation in the clinic, mainly driven by breakthrough developments in the area of molecular biology. New developments have seen an integration of microfluidics and also biosensors in liquid biopsy systems, bringing advantages in terms of cost, sensitivity and automation. Without a doubt, the next decade will bring the clinical validation and approval of these combined solutions, which is expected to be crucial for the wide implementation of liquid biopsy systems in clinical routine.


Assuntos
Técnicas Biossensoriais , Microfluídica , Testes de Coagulação Sanguínea , Biópsia Líquida
2.
An Acad Bras Cienc ; 91(suppl 1): e20180373, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30379272

RESUMO

Mangroves are ecosystems located in the transition zone between land and sea, characterized by periodic flooding that confer to its unique characteristics. Little is known about the transformation of nutrients that occur during the organic matter degradation in this system. In this study, we monitor the nitrogen transformations in soils from three mangroves with distinct levels of contamination using labeled 15NO3-. We also screened the mangroves metagenomes for the presence of genes that encode enzymes involved in denitrification (nirS, nirK, nosZ, norB and narG), anaerobic oxidation of ammonia (anammox) (hh, hao and hzo) and dissimilatory nitrate reduction to ammonium (DNRA) (nrfA). The transformations of 15NO3- indicated the balance of denitrification over anammox and DNRA in all three mangroves, with lower rates of processes in the mangrove affected by oil contamination. The metagenomic analysis detected 56 sequences related to denitrification, 19 with anammox and 6 with DNRA. Genes related with denitrification were phylogenetically distributed among several groups of bacteria (mainly Gammaproteobacteria). Anammox and DNRA related sequences were affiliated with Planctomycetes and Gammaproteobacteria, respectively. Thus, metagenomic and functional approaches supported the description of denitrification, anammox and DNRA rates in mangrove soils, and identified the major bacterial groups involved in these processes.


Assuntos
Amônia/metabolismo , Anaerobiose , Desnitrificação , Nitratos/metabolismo , Oxirredução , Áreas Alagadas , Desnitrificação/genética , Metagenoma/genética , Ciclo do Nitrogênio , Plantas/metabolismo , Solo
3.
Microb Ecol ; 75(2): 479-486, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28875307

RESUMO

The ecological competences in microbiomes are driven by the adaptive capabilities present within microbiome members. Horizontal gene transfer (HGT) promoted by plasmids provides a rapid adaptive strategy to microbiomes, an interesting feature considering the constantly changing conditions in most environments. This study examined the parA locus, found in the highly promiscuous PromA class of plasmids, as the insertion site for incoming genes. A novel PCR system was designed that enabled examining insertions into this locus. Microbiomes of mangrove sediments, salt marsh, mycosphere, and bulk soil revealed habitat-specific sets of insertions in this plasmid region. Furthermore, such habitats could be differentiated based on patterns of parA-inserted genes, and the genes carried by these plasmids. Thus, a suite of dioxygenase-related genes and transposase elements were found in oil-affected mangroves, whereas genes involved in nitrogen and carbon cycling were detected in salt marsh and soils. All genes detected could be associated with capabilities of members of the microbiome to adapt to and survive in each habitat. The methodology developed in this work was effective, sensitive, and practical, allowing detection of mobilized genes between microorganisms.


Assuntos
Bactérias/genética , Transferência Genética Horizontal , Plasmídeos/genética , Reação em Cadeia da Polimerase/métodos , Bactérias/classificação , Bactérias/isolamento & purificação , Ecossistema , Plasmídeos/metabolismo , Solo/química , Especificidade da Espécie
4.
World J Microbiol Biotechnol ; 33(7): 141, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28593475

RESUMO

Mangroves are located in coastal wetlands and are susceptible to the consequences of oil spills, what may threaten the diversity of microorganisms responsible for the nutrient cycling and the consequent ecosystem functioning. Previous reports show that high concentration of oil favors the incidence of epoxide hydrolases and haloalkane dehalogenases in mangroves. This finding has guided the goals of this study in an attempt to broaden the analysis to other hydrolases and thereby verify whether oil contamination interferes with the prevalence of particular hydrolases and their assigned microorganisms. For this, an in-depth survey of the taxonomic and functional microbial diversity recovered in a fosmid library (Library_Oil Mgv) constructed from oil-impacted Brazilian mangrove sediment was carried out. Fosmid DNA of the whole library was extracted and submitted to Illumina HiSeq sequencing. The resulting Library Oil_Mgv dataset was further compared with those obtained by direct sequencing of environmental DNA from Brazilian mangroves (from distinct regions and affected by distinct sources of contamination), focusing on hydrolases with potential use in biotechnological processes. The most abundant hydrolases found were proteases, esterases and amylases, with similar occurrence profile in all datasets. The main microbial groups harboring such hydrolase-encoding genes were distinct in each mangrove, and in the fosmid library these enzymes were mainly assigned to Chloroflexaceae (for amylases), Planctomycetaceae (for esterases) and Bradyrhizobiaceae (for proteases). Assembly and analysis of Library_Oil Mgv reads revealed three potentially novel enzymes, one epoxide hydrolase, one xylanase and one amylase, to be further investigated via heterologous expression assays.


Assuntos
Bactérias/classificação , Sedimentos Geológicos/microbiologia , Hidrolases/genética , Metagenômica/métodos , Bactérias/enzimologia , Bactérias/genética , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Biodiversidade , Brasil , Biblioteca Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Poluição por Petróleo/efeitos adversos , Filogenia , Análise de Sequência de DNA , Microbiologia do Solo , Áreas Alagadas
5.
Environ Microbiol ; 16(3): 845-55, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24033859

RESUMO

Mangrove soils are anaerobic environments rich in sulphate and organic matter. Although the sulphur cycle is one of the major actors in this ecosystem, little is known regarding the sulphur bacteria communities in mangrove soils. We investigated the abundance, composition and diversity of sulphur-oxidizing (SOB) and sulphate-reducing (SRB) bacteria in sediments from three Brazilian mangrove communities: two contaminated, one with oil (OilMgv) and one with urban waste and sludge (AntMgv), and one pristine (PrsMgv). The community structures were assessed using quantitative real-time polymerase chain reaction (qPCR), polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and clone libraries, using genes for the enzymes adenosine-5'-phosphosulphate reductase (aprA) and sulphite reductase (Dsr) (dsrB). The abundance for qPCR showed the ratio dsrB/aprA to be variable among mangroves and higher according to the gradient observed for oil contamination in the OilMgv. The PCR-DGGE patterns analysed by Nonmetric Multidimensional Scaling revealed differences among the structures of the three mangrove communities. The clone libraries showed that Betaproteobacteria, Gammaproteobacteria and Deltaproteobacteria were the most abundant groups associated with sulphur cycling in mangrove sediments. We conclude that the microbial SOB and SRB communities in mangrove soils are different in each mangrove forest and that such microbial communities could possibly be used as a proxy for contamination in mangrove forests.


Assuntos
Bactérias/genética , Ecossistema , Microbiologia Ambiental , Sedimentos Geológicos/microbiologia , Bactérias/classificação , Brasil , Monitoramento Ambiental , Genes Bacterianos/genética , Sedimentos Geológicos/química , Dados de Sequência Molecular , Oxirredução , Filogenia , Poluentes do Solo/análise , Sulfatos/metabolismo , Enxofre/metabolismo
6.
Appl Environ Microbiol ; 80(20): 6437-45, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25107970

RESUMO

The composition of the rhizosphere microbiome is a result of interactions between plant roots, soil, and environmental conditions. The impact of genetic variation in plant species on the composition of the root-associated microbiota remains poorly understood. This study assessed the abundances and structures of nitrogen-transforming (ammonia-oxidizing) archaea and bacteria as well as nitrogen-fixing bacteria driven by genetic modification of their maize host plants. The data show that significant changes in the abundances (revealed by quantitative PCR) of ammonia-oxidizing bacterial and archaeal communities occurred as a result of the maize host being genetically modified. In contrast, the structures of the total communities (determined by PCR-denaturing gradient gel electrophoresis) were mainly driven by factors such as soil type and season and not by plant genotype. Thus, the abundances of ammonia-oxidizing bacterial and archaeal communities but not structures of those communities were revealed to be responsive to changes in maize genotype, allowing the suggestion that community abundances should be explored as candidate bioindicators for monitoring the possible impacts of cultivation of genetically modified plants.


Assuntos
Consórcios Microbianos , Plantas Geneticamente Modificadas , Microbiologia do Solo , Zea mays , Amônia/metabolismo , Brasil , Eletroforese em Gel de Gradiente Desnaturante , Dados de Sequência Molecular , Fixação de Nitrogênio , Oxirredução , Oxirredutases/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Reação em Cadeia da Polimerase , Rizosfera , Zea mays/genética , Zea mays/crescimento & desenvolvimento
7.
Antonie Van Leeuwenhoek ; 103(3): 589-601, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23124960

RESUMO

The use of genetically modified (GM) plants still raises concerns about their environmental impact. The present study aimed to evaluate the possible effects of GM maize, in comparison to the parental line, on the structure and abundance of microbial communities in the rhizosphere. Moreover, the effect of soil type was addressed. For this purpose, the bacterial and fungal communities associated with the rhizosphere of GM plants were compared by culture-independent methodologies to the near-isogenic parental line. Two different soils and three stages of plant development in two different periods of the year were included. As evidenced by principal components analysis (PCA) of the PCR-DGGE profiles of evaluated community, clear differences occurred in these rhizosphere communities between soils and the periods of the year that maize was cultivated. However, there were no discernible effects of the GM lines as compared to the parental line. For all microbial communities evaluated, soil type and the period of the year that the maize was cultivated were the main factors that influenced their structures. No differences were observed in the abundances of total bacteria between the rhizospheres of GM and parental plant lines.


Assuntos
Bactérias/classificação , Biota , Fungos/classificação , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas/microbiologia , Rizosfera , Zea mays/microbiologia , Bactérias/genética , Análise por Conglomerados , Eletroforese em Gel de Gradiente Desnaturante , Fungos/genética , Metagenoma , Reação em Cadeia da Polimerase , Fatores de Tempo
8.
World J Microbiol Biotechnol ; 29(2): 217-21, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23014841

RESUMO

Twelve endophytic bacteria were isolated from the meristem of in vitro Cymbidium eburneum orchid, and screened according to indole yield quantified by colorimetric assay, in vitro phosphate solubilization, and potential for plant growth promotion under greenhouse conditions. Eight strains with positive results were classified into the genus Paenibacillus by FAME profile, and evaluated for their ability to increase survival and promote the growth of in vitro germinated Cattleya loddigesii seedlings during the acclimatization process. The obtained results showed that all strains produced detectable indole levels and did not exhibit potential for solubilizing inorganic phosphate. Particularly, an increase of the total biomass and number of leaves was observed. Two strains of Paenibacillus macerans promoted plant growth under greenhouse conditions. None of the treatments had a deleterious effect on growth of inoculated plants. These results suggest that these bacterial effects could be potentially useful to promote plant growth during seedling acclimatization in orchid species other than the species of origin.


Assuntos
Bactérias/isolamento & purificação , Endófitos/isolamento & purificação , Orchidaceae/crescimento & desenvolvimento , Orchidaceae/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Endófitos/classificação , Endófitos/genética , Endófitos/metabolismo , Ácidos Indolacéticos/metabolismo , Fosfatos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/microbiologia
9.
Appl Environ Microbiol ; 78(22): 7960-7, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22941088

RESUMO

Although mangroves represent ecosystems of global importance, the genetic diversity and abundance of functional genes that are key to their functioning scarcely have been explored. Here, we present a survey based on the nifH gene across transects of sediments of two mangrove systems located along the coast line of São Paulo state (Brazil) which differed by degree of disturbance, i.e., an oil-spill-affected and an unaffected mangrove. The diazotrophic communities were assessed by denaturing gradient gel electrophoresis (DGGE), quantitative PCR (qPCR), and clone libraries. The nifH gene abundance was similar across the two mangrove sediment systems, as evidenced by qPCR. However, the nifH-based PCR-DGGE profiles revealed clear differences between the mangroves. Moreover, shifts in the nifH gene diversities were noted along the land-sea transect within the previously oiled mangrove. The nifH gene diversity depicted the presence of nitrogen-fixing bacteria affiliated with a wide range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and also a group of anaerobic sulfate-reducing bacteria. We also detected a unique mangrove-specific cluster of sequences denoted Mgv-nifH. Our results indicate that nitrogen-fixing bacterial guilds can be partially endemic to mangroves, and these communities are modulated by oil contamination, which has important implications for conservation strategies.


Assuntos
Avicennia/microbiologia , Bactérias/classificação , Biota , Combretaceae/microbiologia , Variação Genética , Oxirredutases/genética , Rhizophoraceae/microbiologia , Bactérias/genética , Brasil , DNA Bacteriano/química , DNA Bacteriano/genética , Eletroforese em Gel de Gradiente Desnaturante , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
10.
World J Microbiol Biotechnol ; 28(5): 2195-203, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22806042

RESUMO

It is believed that the exposure of organisms to harsh climate conditions may select for differential enzymatic activities, making the surviving organisms a very promising source for bioprospecting. Soil bacteria play an important role in degradation of organic matter, which is mostly due to their ability to decompose cellulose-based materials. This work focuses on the isolation and identification of cellulolytic bacteria from soil found in two environments with stressful climate conditions (Antarctica and the Brazilian semi-arid caatinga). Cellulolytic bacteria were selected using enrichments at high and low temperatures (4 or 60°C) in liquid media (trypic soy broth-TSB and minimum salt medium-MM) supplemented with cellulose (1%). Many of the isolates (119 out of 254-46.9%) displayed the ability to degrade carboxymethyl-cellulose, indicating the presence of endoglucolytic activity, while only a minority of these isolates (23 out of 254-9.1%) showed exoglucolytic activity (degradation of avicel). The obtained isolates revealed a preferential endoglucolytic activity according to the temperature of enrichments. Also, the identification of some isolates by partial sequencing of the 16S rRNA gene indicated that the Bacteroidetes (e.g., Pedobacter, Chryseobacterium and Flavobacterium) were the main phylum of cellulolytic bacteria isolated from soil in Antarctica; the Firmicutes (e.g., Bacillus) were more commonly isolated from samples from the caatinga; and Actinobacteria were found in both types of soil (e.g., Microbacterium and Arthrobacter). In conclusion, this work reports the isolation of bacteria able to degrade cellulose-based material from soil at very low or very high temperatures, a finding that should be further explored in the search for cellulolytic enzymes to be used in the bioenergy industry.


Assuntos
Bactérias/enzimologia , Bactérias/metabolismo , Celulases/metabolismo , Celulose/metabolismo , Microbiologia do Solo , Regiões Antárticas , Bactérias/classificação , Bactérias/isolamento & purificação , Brasil , Análise por Conglomerados , Meios de Cultura/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Clima Desértico , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Temperatura
11.
Braz J Microbiol ; 43(2): 653-60, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24031877

RESUMO

Mangrove forests encompass a group of trees species that inhabit the intertidal zones, where soil is characterized by the high salinity and low availability of oxygen. The phyllosphere of these trees represent the habitat provided on the aboveground parts of plants, supporting in a global scale, a large and complex microbial community. The structure of phyllosphere communities reflects immigration, survival and growth of microbial colonizers, which is influenced by numerous environmental factors in addition to leaf physical and chemical properties. Here, a combination of culture-base methods with PCR-DGGE was applied to test whether local or plant specific factors shape the bacterial community of the phyllosphere from three plant species (Avicenia shaueriana, Laguncularia racemosa and Rhizophora mangle), found in two mangroves. The number of bacteria in the phyllosphere of these plants varied between 3.62 x 10(4) in A. schaeriana and 6.26 x 10(3) in R. mangle. The results obtained by PCR-DGGE and isolation approaches were congruent and demonstrated that each plant species harbor specific bacterial communities in their leaves surfaces. Moreover, the ordination of environmental factors (mangrove and plant species), by redundancy analysis (RDA), also indicated that the selection exerted by plant species is higher than mangrove location on bacterial communities at phyllosphere.

12.
Biosens Bioelectron ; 204: 114075, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35183908

RESUMO

Cancer is the second leading cause of death worldwide. Early diagnosis and personalization of treatment have become effective routes to control the increasing mortality rate. Since cancer is a genetic disease, there is a great demand for novel techniques to detect tumor nucleic acids (NAs) with increased sensitivity. In recent years, surface enhanced Raman spectroscopy (SERS) emerged as a popular technique for biosensing in cancer theranostics. Combined with molecular probes, SERS allows ultrasensitive and multiplex detection of tumor-derived NAs, with great potential for clinical cancer detection and subtyping. In this review, we summarize and compare the various strategies for designing SERS-based NA sensors, focusing on the mechanism of sensing, followed by their representative applications to cancer theranostics in recent 5 years, as well as future challenges for clinical translation. The review is aimed to provide basic guidelines for engineering SERS-based NA sensors, according to the specific clinical cancer application.


Assuntos
Técnicas Biossensoriais , Neoplasias , Ácidos Nucleicos , Técnicas Biossensoriais/métodos , Humanos , Neoplasias/diagnóstico , Medicina de Precisão , Análise Espectral Raman/métodos
13.
Genes (Basel) ; 13(2)2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35205220

RESUMO

In 2015 a mine dam with Mn-Fe-rich tailings collapsed releasing million tons of sediments over an estuary, in the Southwest of Brazil. The tailings have a high concentration of metals that contaminated soil until the present day. The high contaminant concentrations possibly caused a selection for microorganisms able to strive in such harsh conditions. Here, we isolated metal(loid) and anti-biotic resistance bacteria from the contaminated estuarine soil. After 16S rDNA sequencing to identify the strains, we selected the Mucilaginibacter sp. strain for a whole-genome sequence due to the bioprospective potential of the genus and the high resistance profile. We obtained a complete genome and a genome-guided characterization. Our finding suggests that the 21p strain is possibly a new species of the genus. The species presented genes for resistance for metals (i.e., As, Zn, Co, Cd, and Mn) beyond resistance and cross-resistance for antibiotics (i.e., quinolone, aminoglycoside, ß-lactamase, sulphonamide, tetracycline). The Mucilaginibacter sp. 21p description as new species should be further explored, as their extracellular polymeric substances and the potential of this strain as bioremediation and as a growth promoter in high met-al(loid) contaminated soil.


Assuntos
Poluentes do Solo , Solo , Bacteroidetes , Resistência Microbiana a Medicamentos/genética , Monitoramento Ambiental , Metais
14.
Microbiol Resour Announc ; 10(41): e0077921, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34647810

RESUMO

We report the complete genome sequence of Mucilaginibacter strain 21P, which was isolated from estuarine soil contaminated with mine tailings from the Samarco disaster, which occurred in 2015 in Brazil. The genome sequence comprised 4,739,655 bp, with a G+C content of 43.2%, and harbors multiple antibiotic and metal resistance genes.

15.
Microbiol Resour Announc ; 10(16)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888506

RESUMO

Bacillus safensis 3A was isolated from a contaminated estuarine sediment sample with mine tailing from the Samarco dam disaster, which occurred in 2015 in Minas Gerais State, Brazil. We report here a draft genome sequence (3.6 Mb) of this bacterial strain. B. safensis exhibited strong resistance to heavy metals.

16.
Environ Pollut ; 268(Pt A): 115757, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33168375

RESUMO

Anthropogenic activities in coastal marine ecosystems can lead to an increase in the abundance of potentially harmful microorganisms in the marine environment. To understand anthropogenic impacts on the marine microbiome, we first used publicly available microbial phylogenetic and functional data to establish a dataset of bacterial genera potentially related to pathogens that cause diseases (BGPRD) in marine organisms. Representatives of low-, medium- and highly impacted marine coastal environments were selected, and the abundance and composition of their microbial communities were determined by quantitative PCR and 16 S rRNA gene sequencing. In total, 72 BGPRD were cataloged, and 11, 36 and 37 BGPRD were found in low-, medium- and highly human-impacted ecosystems, respectively. The absolute abundance of BGPRD and the co-occurrence of antibiotic resistance genes (AGR) increased with the degree of anthropogenic perturbation in these ecosystems. Anthropogenically impacted coastal microbiomes were compositionally and functionally distinct from those of less impacted sites, presenting features that may contribute to adverse outcomes for marine macrobiota in the Anthropocene era.


Assuntos
Microbiota , Organismos Aquáticos , Bactérias/genética , Resistência Microbiana a Medicamentos , Humanos , Filogenia
17.
Antonie Van Leeuwenhoek ; 98(4): 541-51, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20563848

RESUMO

The bacterial diversity present in sediments of a well-preserved mangrove in Ilha do Cardoso, located in the extreme south of São Paulo State coastline, Brazil, was assessed using culture-independent molecular approaches (denaturing gradient gel electrophoresis (DGGE) and analysis of 166 sequences from a clone library). The data revealed a bacterial community dominated by Alphaproteobacteria (40.36% of clones), Gammaproteobacteria (19.28% of clones) and Acidobacteria (27.71% of clones), while minor components of the assemblage were affiliated to Betaproteobacteria, Deltaproteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. The clustering and redundancy analysis (RDA) based on DGGE were used to determine factors that modulate the diversity of bacterial communities in mangroves, such as depth, seasonal fluctuations, and locations over a transect area from the sea to the land. Profiles of specific DGGE gels showed that both dominant ('universal' Bacteria and Alphaproteobacteria) and low-density bacterial communities (Betaproteobacteria and Actinobacteria) are responsive to shifts in environmental factors. The location within the mangrove was determinant for all fractions of the community studied, whereas season was significant for Bacteria, Alphaproteobacteria, and Betaproteobacteria and sample depth determined the diversity of Alphaproteobacteria and Actinobacteria.


Assuntos
Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Biodiversidade , Sedimentos Geológicos/microbiologia , Rhizophoraceae/microbiologia , Microbiologia do Solo , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/crescimento & desenvolvimento , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Alphaproteobacteria/crescimento & desenvolvimento , Bactérias/genética , Bacteroidetes/classificação , Bacteroidetes/genética , Bacteroidetes/crescimento & desenvolvimento , Composição de Bases , Betaproteobacteria/classificação , Betaproteobacteria/genética , Betaproteobacteria/crescimento & desenvolvimento , Brasil , DNA Bacteriano/análise , DNA Bacteriano/genética , Deltaproteobacteria/classificação , Deltaproteobacteria/genética , Deltaproteobacteria/crescimento & desenvolvimento , Ecossistema , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Gammaproteobacteria/crescimento & desenvolvimento , Variação Genética , Sedimentos Geológicos/análise , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , Água do Mar , Análise de Sequência de DNA , Temperatura
18.
Antonie Van Leeuwenhoek ; 97(4): 401-11, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20195901

RESUMO

Mangrove sediments are anaerobic ecosystems rich in organic matter. This environment is optimal for anaerobic microorganisms, such as sulphate-reducing bacteria and methanogenic archaea, which are responsible for nutrient cycling. In this study, the diversity of these two functional guilds was evaluated in a pristine mangrove forest using denaturing gradient gel electrophoresis (DGGE) and clone library sequencing in a 50 cm vertical profile sampled every 5.0 cm. DGGE profiles indicated that both groups presented higher richness in shallow samples (0-30 cm) with a steep decrease in richness beyond that depth. According to redundancy analysis, this alteration significantly correlated with a decrease in the amount of organic matter. Clone library sequencing indicated that depth had a strong effect on the selection of dissimilatory sulphate reductase (dsrB) operational taxonomic units (OTUs), as indicated by the small number of shared OTUs found in shallow (0.0 cm) and deep (40.0 cm) libraries. On the other hand, methyl coenzyme-M reductase (mcrA) libraries indicated that most of the OTUs found in the shallow library were present in the deep library. These results show that these two guilds co-exist in these mangrove sediments and indicate important roles for these organisms in nutrient cycling within this ecosystem.


Assuntos
Archaea/classificação , Bactérias/classificação , Biodiversidade , Metano/metabolismo , Rhizophoraceae/microbiologia , Sulfatos/metabolismo , Archaea/metabolismo , Proteínas Arqueais/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Eletroforese em Gel de Poliacrilamida , Dados de Sequência Molecular , Desnaturação de Ácido Nucleico , Oxirredução , Análise de Sequência de DNA
19.
PeerJ ; 8: e9152, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547860

RESUMO

Divergences between agricultural management can result in different types of biological interactions between plants and microorganisms, which may affect food quality and productivity. Conventional practices are well-established in the agroindustry as very efficient and lucrative; however, the increasing demand for sustainable alternatives has turned attention towards agroecological approaches. Here we intend to explore microbial dynamics according to the agricultural management used, based on the composition and structure of these bacterial communities on the most environmentally exposed habitat, the phyllosphere. Leaf samples were collected from a Citrus crop (cultivated Orange) in Mogi-Guaçu (SP, Brazil), where either conventional or ecological management systems were properly applied in two different areas. NGS sequencing analysis and quantitative PCR allowed us to comprehend the phyllosphere behavior and µ-XRF (micro X-ray fluorescence) could provide an insight on agrochemical persistence on foliar tissues. Our results demonstrate that there is considerable variation in the phyllosphere community due to the management practices used in the citrus orchard, and it was possible to quantify most of this variation. Equally, high copper concentrations may have influenced bacterial abundance, having a relevant impact on the differences observed. Moreover, we highlight the intricate relationship microorganisms have with crop production, and presumably with crop yield as well.

20.
Braz J Microbiol ; 51(3): 1151-1157, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31898244

RESUMO

The development of insects is strongly influenced by their resident microorganisms. Symbionts play key roles in insect nutrition, reproduction, and defense. Bacteria are important partners due to the wide diversity of their biochemical pathways that aid in the host development. We present evidence that the foam produced by nymphs of the spittlebug Mahanarva fimbriolata harbors a diversity of bacteria, including some that were previously reported as defensive symbionts of insects. Analysis of the microbiomes in the nymph gut and the soil close to the foam showed that the microorganisms in the foam were more closely related to those in the gut than in the soil, suggesting that the bacteria are actively introduced into the foam by the insect. Proteobacteria, Actinobacteria, and Acidobacteria were the predominant groups found in the foam. Since members of Actinobacteria have been found to protect different species of insects by producing secondary metabolites with antibiotic properties, we speculate that the froth produced by M. fimbriolata may aid in defending the nymphs against entomopathogenic microorganisms.


Assuntos
Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Hemípteros/microbiologia , Microbiologia do Solo , Animais , Bactérias/classificação , Bactérias/genética , Trato Gastrointestinal/microbiologia , Hemípteros/fisiologia , Ninfa/microbiologia , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA