Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Nature ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898283

RESUMO

Glassy polymers are generally stiff and strong yet have limited extensibility1. By swelling with solvent, glassy polymers can become gels that are soft and weak yet have enhanced extensibility1-3. The marked changes in properties arise from the solvent increasing free volume between chains while weakening polymer-polymer interactions. Here we show that solvating polar polymers with ionic liquids (that is, ionogels4,5) at appropriate concentrations can produce a unique class of materials called glassy gels with desirable properties of both glasses and gels. The ionic liquid increases free volume and therefore extensibility despite the absence of conventional solvent (for example, water). Yet, the ionic liquid forms strong and abundant non-covalent crosslinks between polymer chains to render a stiff, tough, glassy, and homogeneous network (that is, no phase separation)6, at room temperature. Despite being more than 54 wt% liquid, the glassy gels exhibit enormous fracture strength (42 MPa), toughness (110 MJ m-3), yield strength (73 MPa) and Young's modulus (1 GPa). These values are similar to those of thermoplastics such as polyethylene, yet unlike thermoplastics, the glassy gels can be deformed up to 670% strain with full and rapid recovery on heating. These transparent materials form by a one-step polymerization and have impressive adhesive, self-healing and shape-memory properties.

2.
Chem Rev ; 124(3): 860-888, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38291556

RESUMO

Printing of stretchable conductors enables the fabrication and rapid prototyping of stretchable electronic devices. For such applications, there are often specific process and material requirements such as print resolution, maximum strain, and electrical/ionic conductivity. This review highlights common printing methods and compatible inks that produce stretchable conductors. The review compares the capabilities, benefits, and limitations of each approach to help guide the selection of a suitable process and ink for an intended application. We also discuss methods to design and fabricate ink composites with the desired material properties (e.g., electrical conductance, viscosity, printability). This guide should help inform ongoing and future efforts to create soft, stretchable electronic devices for wearables, soft robots, e-skins, and sensors.

3.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35105811

RESUMO

This paper reports the noncontact manipulation of free-falling cylindrical streams of liquid metals into unique shapes, such as levitated loops and squares. Such cylindrical streams form in aqueous media by electrochemically lowering the interfacial tension. The electrochemical reactions require an electrical current that flows through the streams, making them susceptible to the Lorentz force. Consequently, varying the position and shape of a magnetic field relative to the stream controls these forces. Moreover, the movement of the metal stream relative to the magnetic field induces significant forces arising from Lenz's law that cause the manipulated streams to levitate in unique shapes. The ability to control streams of liquid metals in a noncontact manner will enable strategies for shaping electronically conductive fluids for advanced manufacturing and dynamic electronic structures.

4.
Nat Mater ; 21(3): 359-365, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35190655

RESUMO

Ionogels are compelling materials for technological devices due to their excellent ionic conductivity, thermal and electrochemical stability, and non-volatility. However, most existing ionogels suffer from low strength and toughness. Here, we report a simple one-step method to achieve ultra-tough and stretchable ionogels by randomly copolymerizing two common monomers with distinct solubility of the corresponding polymers in an ionic liquid. Copolymerization of acrylamide and acrylic acid in 1-ethyl-3-methylimidazolium ethyl sulfate results in a macroscopically homogeneous covalent network with in situ phase separation: a polymer-rich phase with hydrogen bonds that dissipate energy and toughen the ionogel; and an elastic solvent-rich phase that enables for large strain. These ionogels have high fracture strength (12.6 MPa), fracture energy (~24 kJ m-2) and Young's modulus (46.5 MPa), while being highly stretchable (~600% strain) and having self-healing and shape-memory properties. This concept can be applied to other monomers and ionic liquids, offering a promising way to tune ionogel microstructure and properties in situ during one-step polymerization.


Assuntos
Líquidos Iônicos , Condutividade Elétrica , Géis/química , Ligação de Hidrogênio , Líquidos Iônicos/química , Polímeros
5.
Proc Natl Acad Sci U S A ; 117(32): 19026-19032, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32727907

RESUMO

Liquids typically form droplets when exiting a nozzle. Jets--cylindrical streams of fluid-can form transiently at higher fluid velocities, yet interfacial tension rapidly drives jet breakup into droplets via the Rayleigh-Plateau instability. Liquid metal is an unlikely candidate to form stable jets since it has enormous interfacial tension and low viscosity. We report that electrochemical anodization significantly lowers the effective tension of a stream of metal, transitioning it from droplets to long (long lifetime and length) wires with 100-µm diameters without the need for high velocities. Whereas surface minimization drives Rayleigh-Plateau instabilities, these streams of metal increase in surface area when laid flat upon a surface due to the low tension. The ability to tune interfacial tension over at least three orders of magnitude using modest potential (<1 V) enables new approaches for production of metallic structures at room temperature, on-demand fluid-in-fluid structuring, and new tools for studying and controlling fluid behavior.

6.
J Am Chem Soc ; 144(15): 6779-6790, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35293736

RESUMO

This report presents nanoparticles composed of a liquid gallium core with a reduced graphene oxide (RGO) shell (Ga@RGO) of tunable thickness. The particles are produced by a simple, one-pot nanoprobe sonication method. The high near-infrared absorption of RGO results in a photothermal energy conversion of light to heat of 42.4%. This efficient photothermal conversion, combined with the large intrinsic thermal expansion coefficient of liquid gallium, allows the particles to be used for photoacoustic imaging, that is, conversion of light into vibrations that are useful for imaging. The Ga@RGO results in fivefold and twofold enhancement in photoacoustic signals compared with bare gallium nanoparticles and gold nanorods (a commonly used photoacoustic contrast agent), respectively. A theoretical model further reveals the intrinsic factors that affect the photothermal and photoacoustic performance of Ga@RGO. These core-shell Ga@RGO nanoparticles not only can serve as photoacoustic imaging contrast agents but also pave a new way to rationally design liquid metal-based nanomaterials with specific multi-functionality for biomedical applications.


Assuntos
Gálio , Grafite , Nanopartículas , Técnicas Fotoacústicas , Meios de Contraste , Ouro , Técnicas Fotoacústicas/métodos , Fototerapia/métodos
7.
Small ; 18(23): e2201643, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35532205

RESUMO

Recent years have witnessed the rapid development of sustainable materials. Along this line, developing biodegradable or recyclable soft electronics is challenging yet important due to their versatile applications in biomedical devices, soft robots, and wearables. Although some degradable bulk hydrogels are directly used as the soft electronics, the sensing performances are usually limited due to the absence of distributed conducting circuits. Here, sustainable hydrogel-based soft electronics (HSE) are reported that integrate sensing elements and patterned liquid metal (LM) in the gelatin-alginate hybrid hydrogel. The biopolymer hydrogel is transparent, robust, resilient, and recyclable. The HSE is multifunctional; it can sense strain, temperature, heart rate (electrocardiogram), and pH. The strain sensing is sufficiently sensitive to detect a human pulse. In addition, the device serves as a model system for iontophoretic drug delivery by using patterned LM as the soft conductor and electrode. Noncontact detection of nearby objects is also achieved based on electrostatic-field-induced voltage. The LM and biopolymer hydrogel are healable, recyclable, and degradable, favoring sustainable applications and reconstruction of the device with new functions. Such HSE with multiple functions and favorable attributes should open opportunities in next-generation electronic skins and hydrogel machines.


Assuntos
Hidrogéis , Dispositivos Eletrônicos Vestíveis , Alginatos , Biopolímeros , Eletrônica , Humanos
8.
Langmuir ; 38(43): 13279-13287, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36256617

RESUMO

Gallium-based liquid metals (LMs) combine metallic properties with the deformability of a liquid, which makes them promising candidates for a variety of applications. To broaden the range of physical and chemical properties, a variety of solid additives have been incorporated into the LMs in the literature. In contrast, only a handful of secondary fluids have been incorporated into LMs to create foams (gas-in-LM) or emulsions (liquid-in-LM). LM foams readily form through mixing of LM in air, facilitated by the formation of a native oxide on the LM. In contrast, LM breaks up into microdroplets when mixed with a secondary liquid such as silicone oil. Stable silicone oil-in-LM emulsions form only during mixing of the oil with LM foam. In this work, we investigate the fundamental mechanism underlying this process. We describe two possible microscale mechanisms for emulsion formation: (1) oil replacing air in the foam or (2) oil creating additional features in the foam. The associated foam-to-emulsion density difference demonstrates that emulsions predominantly form through the addition of oxide-covered silicone oil capsules to the LM foam. We demonstrate this through density and surface wettability measurements and multiscale imaging of LM foam mixed with varied silicone oil contents in air or nitrogen environments. We also demonstrate the presence of a continuous silicone oil film on the emulsion surface and that this oil film prevents the embrittlement of contacting aluminum.

9.
Biomacromolecules ; 23(1): 424-430, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34905339

RESUMO

We report on the formation of counterpropagating density gradients in poly([2-dimethylaminoethyl] methacrylate) (PDMAEMA) brushes featuring spatially varying quaternized and betainized units. Starting with PDMAEMA brushes with constant grafting density and degree of polymerization, we first generate a density gradient of quaternized units by directional vapor reaction involving methyl iodide. The unreacted DMAEMA units are then betainized through gaseous-phase betainization with 1,3-propanesultone. The gas reaction of PDMAEMA with 1,3-propanesultone eliminates the formation of byproducts present during the liquid-phase modification. We use the counterpropagating density gradients of quaternized and betainized PDMAEMA brushes in antibacterial and antifouling studies. Completely quaternized and betainized brushes exhibit antibacterial and antifouling behaviors. Samples containing 12% of quaternized and 85% of betainized units act simultaneously as antibacterial and antifouling surfaces.


Assuntos
Incrustação Biológica , Polímeros , Antibacterianos/farmacologia , Incrustação Biológica/prevenção & controle , Polimerização
10.
Soft Matter ; 18(48): 9291-9298, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36458858

RESUMO

Soft pneumatic actuators-such as those used for soft robotics-achieve actuation by inflation of pneumatic chambers. Here, we report the use of the electrochemical reduction of water to generate gaseous products that inflate pneumatic chambers. Whereas conventional pneumatic actuators typically utilize bulky mechanical pumps, the approach here utilizes only electricity. In contrast to dielectric actuators, which require ∼kV to actuate, the electrochemical approach uses a potential of a few volts. The applied potential converts liquid water-a safe, abundant, and cheap fuel-into hydrogen gas. Since the chambers are constructed of hydrogel, the body of the actuator provides an abundant supply of water that ultimately converts to gas. The use of liquid metal for the electrode makes the entire device soft and ensures intimate contact between the chamber walls and the electrode during inflation. The device can inflate in tens of seconds, which is slower than other pneumatic approaches, but much faster than actuating hydrogels via principles of swelling. The actuation volume can be predicted and controlled based on the input parameters such as time and voltage. The actuation shape and position can also be controlled by the position of the electrodes and the geometry of the device. Such actuators have the potential to make tether-less (pump-free), electrically-controlled soft devices that can even operate underwater.

11.
Langmuir ; 37(37): 10914-10923, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34491063

RESUMO

This work establishes that static contact angles for gallium-based liquid metals have no utility despite the continued and common use of such angles in the literature. In the presence of oxygen, these metals rapidly form a thin (∼1-3 nm) surface oxide "skin" that adheres to many surfaces and mechanically impedes its flow. This property is problematic for contact angle measurements, which presume the ability of liquids to flow freely to adopt shapes that minimize the interfacial energy. We show here that advancing angles for a metal are always high (>140°)-even on substrates to which it adheres-because the solid native oxide must rupture in tension to advance the contact line. The advancing angle for the metal depends subtly on the substrate surface chemistry but does not vary strongly with hydrophobicity of the substrate. During receding measurements, the metal droplet initially sags as the liquid withdraws from the "sac" formed by the skin and thus the contact area with the substrate initially increases despite its volumetric recession. The oxide pins at the perimeter of the deflated "sac" on all the surfaces are tested, except for certain rough surfaces. With additional withdrawal of the liquid metal, the pinned angle gets smaller until eventually the oxide "sac" collapses. Thus, static contact angles can be manipulated mechanically from 0° to >140° due to hysteresis and are therefore uninformative. We also provide recommendations and best practices for wetting experiments, which may find use in applications that use these alloys such as soft electronics, composites, and microfluidics.

12.
Nat Mater ; 23(1): 29-30, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38129576
13.
Soft Matter ; 16(28): 6608-6618, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32613217

RESUMO

Silicone composites featuring inclusions of liquid metal particles are soft and stretchable materials with useful electric, dielectric, mechanical, and thermal properties. Until recently, these materials have primarily been cast as films. This work examines the possibility of using uncured liquid metal-elastomer (LME) composites as inks for direct writing. The liquid metal inclusions act as rheological modifiers for the silicone, forming a gel-structure that can be extruded from a nozzle and hold its shape after printing. Additionally, by tuning the particle size, larger particles in the printed structures can settle to form metal-rich regions at the bottom of the structures, encased by metal-depleted (insulating) regions. Using mechanical force, the liquid metal-rich interior can be rendered conductive by sintering without affecting the insulating exterior. Thus, it is possible to print this soft and stretchable material while creating conductors with self-insulating shells.

14.
Soft Matter ; 16(25): 5801-5805, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32436530

RESUMO

Foaming of gallium-based liquid metals improves their processability and-seemingly in contrast to processing of other metal foams-can be achieved through shear-mixing in air without addition of solid microparticles. Resolving this discrepancy, systematic processing-structure-property characterization demonstrates that many crumpled oxide particles are generated prior to air bubble accumulation.

15.
Langmuir ; 35(36): 11774-11783, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31407902

RESUMO

Gallium and its alloys react with oxygen to form a native oxide that encapsulates the liquid metal with a solid "skin". The viscoelasticity of this skin is leveraged in applications such as soft electronics, 3D printing, and components for microfluidic devices. In these applications, rheological characterization of the oxide skin is paramount for understanding and controlling liquid metals. Here, we provide a direct comparison of the viscoelastic properties for gallium-based liquid metals and illustrate the effect of different subphases and addition of a dopant on the elastic nature of the oxide skin. The du Noüy ring method is used to investigate the interfacial rheology of oxide skins formed by gallium-based liquid metal alloys. The results show that the oxide layer on gallium, eutectic gallium-indium, and Galinstan are viscoelastic with a yield stress. Furthermore, the storage modulus of the oxide layer is affected by exposure to water or when small amounts of aluminum dopant are added to the liquid metals. The former scenario decreases the interfacial storage modulus of the gallium by 35-85% while the latter increases the interfacial storage modulus by 25-45%. The presence of water also changes the chemical composition of the oxide skin. Scanning electron microscopy, energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy suggest that a microstructural evolution of the interface occurs when aluminum preferentially migrates from the bulk to the surface. These studies provide guidance on selecting liquid metals as well as simple methods to optimize their rheological behavior for future applications.

16.
Small ; 14(20): e1704460, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29659190

RESUMO

Buckling instabilities generate microscale features in thin films in a facile manner. Buckles can form, for example, by heating a metal/polymer film stack on a rigid substrate. Thermal expansion differences of the individual layers generate compressive stress that causes the metal to buckle over the entire surface. The ability to dictate and confine the location of buckle formation can enable patterns with more than one length scale, including hierarchical patterns. Here, sacrificial "ink" patterned on top of the film stack localizes the buckles via two mechanisms. First, stiff inks suppress buckles such that only the non-inked regions buckle in response to infrared light. The metal in the non-inked regions absorbs the infrared light and thus gets sufficiently hot to induce buckles. Second, soft inks that absorb light get hot faster than the non-inked regions and promote buckling when exposed to visible light. The exposed metal in the non-inked regions reflects the light and thus never get sufficiently hot to induce buckles. This second method works on glass substrates, but not silicon substrates, due to the superior thermal insulation of glass. The patterned ink can be removed, leaving behind hierarchical patterns consisting of regions of buckles among non-buckled regions.

17.
Soft Matter ; 14(17): 3296-3303, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29670971

RESUMO

Soft and stretchable materials play an important role in the emerging fields of soft robotics, human-machine interfaces, and stretchable electronics. Hydrogels are compelling materials because they are soft, chemically tunable, biocompatible, and ionically conductive. Hydrogels have been used as components of skin mountable sensors, such as electrocardiogram (ECG) electrodes, and show promise in emerging devices as stretchable, transparent electrodes. Ultimately, these types of devices interface the hydrogel with rigid metallic electrodes to connect with electronic circuitry. Here, we show it is possible to interface hydrogel with liquid metal (eutectic gallium indium, EGaIn) electrodes to create completely soft and deformable electrodes that provide low resistance traces through the gel without altering its mechanical properties. As a case study, we created and tested electrodes for ECG monitoring. ECG electrodes require low impedance at biomedically relevant frequencies (1-50 Hz). Potentiostatic electrochemical impedance spectroscopy measurements show that capacitive effects at the hydrogel-EGaIn interface dominate the impedance at these low frequencies, yet can be reduced by interfacing the metal with acidic or basic hydrogels that remove the native oxide skin from the metal. Increasing the ionic strength of the hydrogel also helps in lowering the impedance of the metal-hydrogel electrodes. The resulting devices have signal-to-noise ratios that exceed commercial ECG electrodes. The softness of these hydrogels can be modified without compromising the electrical properties to create truly soft electrodes. Interfacing liquid metal conductors with hydrogels represents a potential strategy of creating soft electrodes for various bioelectronic applications, e-skins, and next-generation soft robotics.

18.
Nano Lett ; 17(4): 2138-2145, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28325042

RESUMO

Effective endosomal escape remains as the "holy grail" for endocytosis-based intracellular drug delivery. To date, most of the endosomal escape strategies rely on small molecules, cationic polymers, or pore-forming proteins, which are often limited by the systemic toxicity and lack of specificity. We describe here a light-fueled liquid-metal transformer for effective endosomal escape-facilitated cargo delivery via a chemical-mechanical process. The nanoscale transformer can be prepared by a simple approach of sonicating a low-toxicity liquid-metal. When coated with graphene quantum dots (GQDs), the resulting nanospheres demonstrate the ability to absorb and convert photoenergy to drive the simultaneous phase separation and morphological transformation of the inner liquid-metal core. The morphological transformation from nanospheres to hollow nanorods with a remarkable change of aspect ratio can physically disrupt the endosomal membrane to promote endosomal escape of payloads. This metal-based nanotransformer equipped with GQDs provides a new strategy for facilitating effective endosomal escape to achieve spatiotemporally controlled drug delivery with enhanced efficacy.

19.
Phys Rev Lett ; 119(17): 174502, 2017 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-29219460

RESUMO

We identify and characterize a new class of fingering instabilities in liquid metals; these instabilities are unexpected due to the large interfacial tension of metals. Electrochemical oxidation lowers the effective interfacial tension of a gallium-based liquid metal alloy to values approaching zero, thereby inducing drastic shape changes, including the formation of fractals. The measured fractal dimension (D=1.3±0.05) places the instability in a different universality class than other fingering instabilities. By characterizing changes in morphology and dynamics as a function of droplet volume and applied electric potential, we identify the three main forces involved in this process: interfacial tension, gravity, and oxidative stress. Importantly, we find that electrochemical oxidation can generate compressive interfacial forces that oppose the tensile forces at a liquid interface. The surface oxide layer ultimately provides a physical and electrochemical barrier that halts the instabilities at larger positive potentials. Controlling the competition between interfacial tension and oxidative (compressive) stresses at the interface is important for the development of reconfigurable electronic, electromagnetic, and optical devices that take advantage of the metallic properties of liquid metals.

20.
Soft Matter ; 13(12): 2299-2308, 2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28233884

RESUMO

The ability to change shape and control curvature in 3D structures starting from planar sheets can aid in assembly and add functionality to an object. Herein, we convert planar sheets of shape memory polymers (SMPs) into 3D objects with controllable curvature by dictating where the sheets shrink. Ink patterned on the surface of the sheet absorbs infrared (IR) light, resulting in localized heating, and the material shrinks locally wherever the temperature exceeds the activation temperature, Ta. We introduce two different mechanisms for controlling curvature within SMP sheets. The 'direct' mechanism uses localized shrinkage to induce curvature only in regions patterned with ink. The 'indirect' mechanism uses localized shrinkage in regions patterned with ink to induce curvature in neighboring regions without ink through a balance of internal stresses. Finite element analysis predicts the final shape of the polymer sheets with excellent qualitative agreement with experimental studies. Results from this study show that curvature can be controlled by the distribution and darkness of the ink pattern on the polymer sheet. Additionally, we utilize the direct and indirect curvature mechanisms to demonstrate the formation and actuation of gripper devices, which represent the potential utility of this approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA