RESUMO
Nitric oxide (NO) donating drugs such as organic nitrates have been used to treat cardiovascular diseases for more than a century. These donors primarily produce NO systemically. It is however sometimes desirable to control the amount, location, and time of NO delivery. We present the design of a novel pH-sensitive NO release system that is achieved by the synthesis of dipeptide diphenylalanine (FF) and graphene oxide (GO) co-assembled hybrid nanosheets (termed as FF@GO) through weak molecular interactions. These hybrid nanosheets were characterised by using X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, zeta potential measurements, X-ray photoelectron spectroscopy, scanning and transmission electron microscopies. The weak molecular interactions, which include electrostatic, hydrogen bonding and π-π stacking, are pH sensitive due to the presence of carboxylic acid and amine functionalities on GO and the dipeptide building blocks. Herein, we demonstrate that this formulation can be loaded with NO gas with the dipeptide acting as an arresting agent to inhibit NO burst release at neutral pH; however, at acidic pH it is capable of releasing NO at the rate of up to 0.6 µM per minute, comparable to the amount of NO produced by healthy endothelium. In conclusion, the innovative conjugation of dipeptide with graphene can store and release NO gas under physiologically relevant concentrations in a pH-responsive manner. pH responsive NO-releasing organic-inorganic nanohybrids may prove useful for the treatment of cardiovascular diseases and other pathologies.
Assuntos
Grafite , Nanoestruturas , Óxido Nítrico , Grafite/química , Concentração de Íons de Hidrogênio , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Nanoestruturas/química , Humanos , Dipeptídeos/química , Fenilalanina/química , Fenilalanina/análogos & derivadosRESUMO
Although sodium-ion batteries (SIBs) are considered promising alternatives to their Li counterparts, they still suffer from challenges like slow kinetics of the sodiation process, large volume change, and inferior cycling stability. On the other hand, the presence of additional reversible conversion reactions makes the metal compounds the preferred anode materials over carbon. However, conductivity and crystallinity of such materials often play the pivotal role in this regard. To address these issues, atomic layer deposited double-anion-based ternary zinc oxysulfide (ZnOS) thin films as an anode material in SIBs are reported. Electrochemical studies are carried out with different O/(O+S) ratios, including O-rich and S-rich crystalline ZnOS along with the amorphous phase. Amorphous ZnOS with the O/(O+S) ratio of ≈0.4 delivers the most stable and considerably high specific (and volumetric) capacities of 271.9 (≈1315.6 mAh cm-3 ) and 173.1 mAh g-1 (≈837.7 mAh cm-3 ) at the current densities of 500 and 1000 mA g-1 , respectively. A dominant capacitive-controlled contribution of the amorphous ZnOS anode indicates faster electrochemical reaction kinetics. An electrochemical reaction mechanism is also proposed via X-ray photoelectron spectroscopy analyses. A comparison of the cycling stability further establishes the advantage of this double-anion-based material over pristine ZnO and ZnS anodes.
RESUMO
Anode-free Li-ion batteries (AFBs), where a Cu current collector is used to plate and strip Li instead of a classic anode, are promising technologies to increase the energy density of batteries. In addition, AFBs are safer and easier to manufacture than competing Li-metal anodes and solid-state batteries. However, the loss of Li inventory that occurs during the operation of AFBs limits their lifespan and practical application. In this study, we find that, in particular, the current density used during the formation of AFBs has a considerable impact on the cycling stability of the cell. We optimize the formation protocol based on experimental and computational observations of thresholds associated with morphological changes in the plated Li and the chemical composition of the solid-electrolyte interphase. Unlike graphite anodes, which require slow formation cycles, AFBs exhibit improved cycling behavior when formed at the highest current densities that avoid dendritic Li formation. We verify that this strategy for optimizing the formation current density is effective for three different electrolyte formulations and, therefore, provides a straightforward universal rationale to optimize the formation protocols for AFBs.
RESUMO
The cathode-electrolyte interphase (CEI) in Li-ion batteries plays a key role in suppressing undesired side reactions while facilitating Li-ion transport. Ni-rich layered cathode materials offer improved energy densities, but their high interfacial reactivities can negatively impact the cycle life and rate performance. Here we investigate the role of electrolyte salt concentration, specifically LiPF6 (0.5-5 m), in altering the interfacial reactivity of charged LiN0.8Mn0.1Co0.1O2 (NMC811) cathodes in standard carbonate-based electrolytes (EC/EMC vol %/vol % 3:7). Extended potential holds of NMC811/Li4Ti5O12 (LTO) cells reveal that the parasitic electrolyte oxidation currents observed are strongly dependent on the electrolyte salt concentration. X-ray photoelectron and absorption spectroscopy (XPS/XAS) reveal that a thicker LixPOyFz-/LiF-rich CEI is formed in the higher concentration electrolytes. This suppresses reactions with solvent molecules resulting in a thinner, or less-dense, reduced surface layer (RSL) with lower charge transfer resistance and lower oxidation currents at high potentials. The thicker CEI also limits access of acidic species to the RSL suppressing transition-metal dissolution into the electrolyte, as confirmed by nuclear magnetic resonance (NMR) spectroscopy and inductively coupled plasma optical emission spectroscopy (ICP-OES). This provides insight into the main degradation processes occurring at Ni-rich cathode interfaces in contact with carbonate-based electrolytes and how electrolyte formulation can help to mitigate these.
RESUMO
Ni-rich layered oxide cathodes can deliver higher energy density batteries, but uncertainties remain over their charge compensation mechanisms and the degradation processes that limit cycle life. Trapped molecular O2 has been identified within LiNiO2 at high states of charge, as seen for Li-rich cathodes where excess capacity is associated with reversible oxygen redox. Here we show that bulk redox in LiNiO2 occurs by Ni-O rehybridization, lowering the electron density on O sites, but importantly without the involvement of molecular O2. Instead, trapped O2 is related to degradation at surfaces in contact with the electrolyte, and is accompanied by Ni reduction. O2 is removed on discharge, but excess Ni2+ persists forming a reduced surface layer, associated with impeded Li transport. This implicates the instability of delithiated LiNiO2 in contact with the electrolyte in surface degradation through O2 formation and Ni reduction, highlighting the importance of surface stabilisation strategies in suppressing LiNiO2 degradation.
RESUMO
A porous 1D nanostructure provides much shorter electron transport pathways, thereby helping to improve the life cycle of the device and overcome poor ionic and electronic conductivity, interfacial impedance between electrode-electrolyte interface, and low volumetric energy density. In view of this, we report on the feasibility of 1D porous NiO nanorods comprising interlocked NiO nanoparticles as an active electrode for capturing greenhouse CO2, effective supercapacitors, and efficient electrocatalytic water-splitting applications. The nanorods with a size less than 100 nm were formed by stacking cubic crystalline NiO nanoparticles with dimensions less than 10 nm, providing the necessary porosity. The existence of Ni2+ and its octahedral coordination with O2- is corroborated by XPS and EXAFS. The SAXS profile and BET analysis showed 84.731 m2 g-1 surface area for the porous NiO nanorods. The NiO nanorods provided significant surface-area and the active-surface-sites thus yielded a CO2 uptake of 63 mmol g-1 at 273 K via physisorption, a specific-capacitance (CS) of 368 F g-1, along with a retention of 76.84% after 2500 cycles, and worthy electrocatalytic water splitting with an overpotential of 345 and 441 mV for HER and OER activities, respectively. Therefore, the porous 1D NiO as an active electrode shows multifunctionality toward sustainable environmental and energy applications.
RESUMO
In this study, tetraethylene glycol dimethyl ether (TEGDME) is demonstrated as an effective additive in poly(propylene carbonate) (PPC) polymers for the enhancement of ionic conductivity and interfacial stability and a tissue membrane is used as a backbone to maintain the mechanical strength of the solid polymer electrolytes (SPEs). TEGDME in the PPC allows the uniform distribution of conductive LiF species throughout the cathode electrolyte interface (CEI) layer which plays a critically important role in the formation of a stable and efficient CEI. In addition, the high modulus of SPEs suppresses the formation of a protrusion-type CEI on the cathode. The SPE with the optimized TEGDME content exhibits a high ionic conductivity of 0.89 mS cm-1 , an adequate potential stability of up to 4.89 V, and a high Li-ion transference number of 0.81 at 60 °C. Moreover, the Li/SPE/Li cell demonstrates excellent cycling stability for 1650 h, and the Li/SPE/LFP full cell exhibits an initial reversible capacity of 103 mAh g-1 and improved stability over 500 cycles at a rate of 1 C. The TEGDME additive improves the electrochemical properties of the SPEs and promotes the creation of a stable interface, which is crucial for ASSLIBs.
Assuntos
Fontes de Energia Elétrica , Lítio , Eletrodos , Íons/química , Lítio/química , Polímeros , Propano/análogos & derivadosRESUMO
Seeds are vulnerable to physical and biological stresses during the germination process. Seed priming strategies can alleviate such stresses. Seed priming is a technique of treating and drying seeds prior to germination in order to accelerate the metabolic process of germination. Multiple benefits are offered by seed priming techniques, such as reducing fertilizer use, accelerating seed germination, and inducing systemic resistance in plants, which are both cost-effective and eco-friendly. For seed priming, cold plasma (CP)-mediated priming could be an innovative alternative to synthetic chemical treatments. CP priming is an eco-friendly, safe and economical, yet relatively less explored technique towards the development of seed priming. In this review, we discussed in detail the application of CP technology for seed priming to enhance germination, the quality of seeds, and the production of crops in a sustainable manner. Additionally, the combination treatment of CP with nanoparticle (NP) priming is also discussed. The large numbers of parameters need to be monitored and optimized during CP treatment to achieve the desired priming results. Here, we discussed a new perspective of machine learning for modeling plasma treatment parameters in agriculture for the development of synergistic protocols for different types of seed priming.
RESUMO
MTO nanodiscs synthesized using the hydrothermal approach were explored for the photocatalytic removal of methylene blue (MB), rhodamine B (RhB), congo red (CR), and methyl orange (MO). The disc-like structures of ~16 nm thick and ~291 nm average diameter of stoichiometric MTO were rhombohedral in nature. The MTO nanodiscs delivered stable and recyclable photocatalytic activity under Xe lamp irradiation. The kinetic studies showed the 89.7, 80.4, 79.4, and 79.4 % degradation of MB, RhB, MO, and CR at the rate constants of 0.011(±0.001), 0.006(±0.001), 0.007(±0.0007), and 0.009 (±0.0001) min-1, respectively, after the 180 min of irradiation. The substantial function of photogenerated holes and hydroxide radicals pertaining to the dye removal phenomena is confirmed by radical scavenger trapping studies. Overall, the present studies provide a way to develop pristine and heterostructure perovskite for photocatalysts degradation of various organic wastes.
RESUMO
Surface modification is one of the impressive and widely used technique to improve the electrochemical performance of sodium-ion batteries by modifying the electrode-electrolyte interface. Herein, we used the atomic layer deposition (ALD) to modify the surface of P2-Na0.5Mn0.5Co0.5O2 by sub-monolayer Al2O3 coating on the prefabricated electrodes. Phase purity is confirmed using various structural and morphological studies. The pristine electrode delivered an initial discharge capacity of 154 mAh g-1 at 0.5C, and inferior rate performance of 23 mAh g-1 at 40C rate. On the other hand, the interfacial modified cathode with 5 cycles of ALD coating delivers a high capacity of 174 and 45 mAh g-1 at 0.5C and 40C rate, respectively. The Co2+/3+ redox couple is utilized for the faradaic process with high reversibility along with suppressed P2-O2 phase transition. The presence of the Al2O3 layer acts as an artificial cathode electrolyte interface by suppressing the electrolyte oxidation at higher cutoff potentials. This is clearly validated by the reduced charge transfer resistance of surface modified electrodes after cycling at various current rates. Even at an elevated temperature condition (50 °C), interfacial layer significantly improves the safety of the cell and ensures the stability of the cathode.
RESUMO
New anode materials with large capacity and long cyclability for next-generation potassium-ion batteries (PIBs) are required. PIBs are in the initial stage of investigation and only a few anode materials have been explored. In this study, for the first time, an SnP3/C nanocomposite with superior cyclability and rate performance was evaluated as an anode for PIBs. The SnP3/C nanocomposite was synthesized by a facile and cost-effective high-energy ball-milling technique. The SnP3/C electrode delivered a first reversible capacity of 410 mAh g-1 and maintained 408 mAh g-1 after 50 cycles at a specific current of 50 mA g-1. After 80 cycles at a high specific current of 500 mA g-1, a high capacity of 225 mAh g-1 remained. From a crystallographic analysis, it was suggested that the SnP3/C nanocomposite underwent a sequential and reversible conversion and alloying reactions. The excellent cycling stability and rate capability of the SnP3/C electrode were attributed to the nanosized SnP3 particles and carbon buffer layer, which supplied channels for the migration of K-ions and mitigated the stress induced by a large volume change during potassiation/depotassiation. In addition, a full cell composed of the SnP3/C nanocomposite anode and potassium Prussian blue cathode exhibited a reversible capacity of 305 mAh g-1 at a specific current of 30 mA g-1 and retained 71.7% of the original capacity after 30 cycles. These results are important for understanding the electrochemical process of the SnP3/C nanocomposite and using the SnP3/C as an anode for PIBs.
RESUMO
In this study, a self-encapsulated Sb-C nanocomposite as an anode material for sodium-ion batteries (SIBs) was successfully synthesised using an SbCl3-citrate complex precursor, followed by a drying and calcination process under an inert N2 atmosphere. When the molar ratio of SbCl3 to citric acid was varied from 1 : 1 to 1 : 4, the Sb-C nanocomposite with a molar ratio of 1 : 3 (Sb-C3) exhibited the highest specific surface area (265.97 m2 g-1) and pore volume (0.158 cm3 g-1). Furthermore, the Sb-C3 electrode showed a high reversible capacity of 559 mA h g-1 at a rate of C/10 and maintained a high reversible capacity of 430 mA h g-1 even after 195 cycles at a rate of 1C. The Sb-C3 electrode exhibited an excellent rate capability of 603, 445, and 357 mA h g-1 at the rates of C/20, 5C, and 10C, respectively. Furthermore, a full cell composed of an Sb-C3 anode and a Na3V2(PO4)3 cathode exhibited good specific capacity and cyclability, making the Sb-C composite a promising anode material for high-performance SIBs.