Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Biol Reprod ; 111(3): 512-515, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-38900906

RESUMO

The Multispecies Ovary Tissue Histology Electronic Repository (MOTHER) is a publicly accessible repository of ovary histology images. MOTHER includes hundreds of images from nonhuman primates, as well as ovary histology images from an expanding range of other species. Along with an image, MOTHER provides metadata about the image, and for selected species, follicle identification annotations. Ongoing work includes assisting scientists with contributing their histology images, creation of manual and automated (via machine learning) processing pipelines to identify and count ovarian follicles in different stages of development, and the incorporation of that data into the MOTHER database (MOTHER-DB). MOTHER will be a critical data repository storing and disseminating high-value histology images that are essential for research into ovarian function, fertility, and intra-species variability.


Assuntos
Ovário , Animais , Feminino , Humanos , Bases de Dados Factuais , Ovário/anatomia & histologia
2.
PLoS Comput Biol ; 19(3): e1010941, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36867658

RESUMO

As researchers develop computational models of neural systems with increasing sophistication and scale, it is often the case that fully de novo model development is impractical and inefficient. Thus arises a critical need to quickly find, evaluate, re-use, and build upon models and model components developed by other researchers. We introduce the NeuroML Database (NeuroML-DB.org), which has been developed to address this need and to complement other model sharing resources. NeuroML-DB stores over 1,500 previously published models of ion channels, cells, and networks that have been translated to the modular NeuroML model description language. The database also provides reciprocal links to other neuroscience model databases (ModelDB, Open Source Brain) as well as access to the original model publications (PubMed). These links along with Neuroscience Information Framework (NIF) search functionality provide deep integration with other neuroscience community modeling resources and greatly facilitate the task of finding suitable models for reuse. Serving as an intermediate language, NeuroML and its tooling ecosystem enable efficient translation of models to other popular simulator formats. The modular nature also enables efficient analysis of a large number of models and inspection of their properties. Search capabilities of the database, together with web-based, programmable online interfaces, allow the community of researchers to rapidly assess stored model electrophysiology, morphology, and computational complexity properties. We use these capabilities to perform a database-scale analysis of neuron and ion channel models and describe a novel tetrahedral structure formed by cell model clusters in the space of model properties and features. This analysis provides further information about model similarity to enrich database search.


Assuntos
Neurociências , Software , Ecossistema , PubMed , Neurônios/fisiologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-38995706

RESUMO

The goal of the Multispecies Ovary Tissue Histology Electronic Repository (MOTHER) project is to establish a collection of nonhuman ovary histology images for multiple species as a resource for researchers and educators. An important component of sharing scientific data is the inclusion of the contextual metadata that describes the data. MOTHER extends the Ecological Metadata Language (EML) for documenting research data, leveraging its data provenance and usage license with the inclusion of metadata for ovary histology images. The design of the MOTHER metadata includes information on the donor animal, including reproductive cycle status, the slide and its preparation. MOTHER also extends the ezEML tool, called ezEML+MOTHER, for the specification of the metadata. The design of the MOTHER database (MOTHERDB) captures the metadata about the histology images, providing a searchable resource for discovering relevant images. MOTHER also defines a curation process for the ingestion of a collection of images and its metadata, verifying the validity of the metadata before its inclusion in the MOTHER collection. A Web search provides the ability to identify relevant images based on various characteristics in the metadata itself, such as genus and species, using filters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA