Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Hum Genomics ; 13(1): 21, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31092297

RESUMO

BACKGROUND: End-stage kidney disease (ESKD) is a significant public health concern disproportionately affecting African Americans (AAs). Type 2 diabetes (T2D) is the leading cause of ESKD in the USA, and efforts to uncover genetic susceptibility to diabetic kidney disease (DKD) have had limited success. A prior genome-wide association study (GWAS) in AAs with T2D-ESKD was expanded with additional AA cases and controls and genotypes imputed to the higher density 1000 Genomes reference panel. The discovery analysis included 3432 T2D-ESKD cases and 6977 non-diabetic non-nephropathy controls (N = 10,409), followed by a discrimination analysis in 2756 T2D non-nephropathy controls to exclude T2D-associated variants. RESULTS: Six independent variants located in or near RND3/RBM43, SLITRK3, ENPP7, GNG7, and APOL1 achieved genome-wide significant association (P < 5 × 10-8) with T2D-ESKD. Following extension analyses in 1910 non-diabetic ESKD cases and 908 non-diabetic non-nephropathy controls, a meta-analysis of 5342 AA all-cause ESKD cases and 6977 AA non-diabetic non-nephropathy controls revealed an additional novel all-cause ESKD locus at EFNB2 (rs77113398; P = 9.84 × 10-9; OR = 1.94). Exclusion of APOL1 renal-risk genotype carriers identified two additional genome-wide significant T2D-ESKD-associated loci at GRAMD3 and MGAT4C. A second variant at GNG7 (rs373971520; P = 2.17 × 10-8, OR = 1.46) remained associated with all-cause ESKD in the APOL1-negative analysis. CONCLUSIONS: Findings provide further evidence for genetic factors associated with advanced kidney disease in AAs with T2D.

2.
PLoS Genet ; 13(4): e1006719, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28430825

RESUMO

Genome-wide association studies (GWAS) have identified >300 loci associated with measures of adiposity including body mass index (BMI) and waist-to-hip ratio (adjusted for BMI, WHRadjBMI), but few have been identified through screening of the African ancestry genomes. We performed large scale meta-analyses and replications in up to 52,895 individuals for BMI and up to 23,095 individuals for WHRadjBMI from the African Ancestry Anthropometry Genetics Consortium (AAAGC) using 1000 Genomes phase 1 imputed GWAS to improve coverage of both common and low frequency variants in the low linkage disequilibrium African ancestry genomes. In the sex-combined analyses, we identified one novel locus (TCF7L2/HABP2) for WHRadjBMI and eight previously established loci at P < 5×10-8: seven for BMI, and one for WHRadjBMI in African ancestry individuals. An additional novel locus (SPRYD7/DLEU2) was identified for WHRadjBMI when combined with European GWAS. In the sex-stratified analyses, we identified three novel loci for BMI (INTS10/LPL and MLC1 in men, IRX4/IRX2 in women) and four for WHRadjBMI (SSX2IP, CASC8, PDE3B and ZDHHC1/HSD11B2 in women) in individuals of African ancestry or both African and European ancestry. For four of the novel variants, the minor allele frequency was low (<5%). In the trans-ethnic fine mapping of 47 BMI loci and 27 WHRadjBMI loci that were locus-wide significant (P < 0.05 adjusted for effective number of variants per locus) from the African ancestry sex-combined and sex-stratified analyses, 26 BMI loci and 17 WHRadjBMI loci contained ≤ 20 variants in the credible sets that jointly account for 99% posterior probability of driving the associations. The lead variants in 13 of these loci had a high probability of being causal. As compared to our previous HapMap imputed GWAS for BMI and WHRadjBMI including up to 71,412 and 27,350 African ancestry individuals, respectively, our results suggest that 1000 Genomes imputation showed modest improvement in identifying GWAS loci including low frequency variants. Trans-ethnic meta-analyses further improved fine mapping of putative causal variants in loci shared between the African and European ancestry populations.


Assuntos
Adiposidade/genética , Obesidade/genética , Serina Endopeptidases/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Antropometria , População Negra/genética , Índice de Massa Corporal , Mapeamento Cromossômico , Feminino , Frequência do Gene , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Desequilíbrio de Ligação , Masculino , Obesidade/patologia , Polimorfismo de Nucleotídeo Único , Relação Cintura-Quadril , População Branca/genética
3.
Genet Epidemiol ; 41(4): 353-362, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28378447

RESUMO

Insertions and deletions (INDELs) represent a significant fraction of interindividual variation in the human genome yet their contribution to phenotypes is poorly understood. To confirm the quality of imputed INDELs and investigate their roles in mediating cardiometabolic phenotypes, genome-wide association and linkage analyses were performed for 15 phenotypes with 1,273,952 imputed INDELs in 1,024 Mexican-origin Americans. Imputation quality was validated using whole exome sequencing with an average kappa of 0.93 in common INDELs (minor allele frequencies [MAFs] ≥ 5%). Association analysis revealed one genome-wide significant association signal for the cholesterylester transfer protein gene (CETP) with high-density lipoprotein levels (rs36229491, P = 3.06 × 10-12 ); linkage analysis identified two peaks with logarithm of the odds (LOD) > 5 (rs60560566, LOD = 5.36 with insulin sensitivity (SI ) and rs5825825, LOD = 5.11 with adiponectin levels). Suggestive overlapping signals between linkage and association were observed: rs59849892 in the WSC domain containing 2 gene (WSCD2) was associated and nominally linked with SI (P = 1.17 × 10-7 , LOD = 1.99). This gene has been implicated in glucose metabolism in human islet cell expression studies. In addition, rs201606363 was linked and nominally associated with low-density lipoprotein (P = 4.73 × 10-4 , LOD = 3.67), apolipoprotein B (P = 1.39 × 10-3 , LOD = 4.64), and total cholesterol (P = 1.35 × 10-2 , LOD = 3.80) levels. rs201606363 is an intronic variant of the UBE2F-SCLY (where UBE2F is ubiquitin-conjugating enzyme E2F and SCLY is selenocysteine lyase) fusion gene that may regulate cholesterol through selenium metabolism. In conclusion, these results confirm the feasibility of imputing INDELs from array-based single nucleotide polymorphism (SNP) genotypes. Analysis of these variants using association and linkage replicated previously identified SNP signals and identified multiple novel INDEL signals. These results support the inclusion of INDELs into genetic studies to more fully interrogate the spectrum of genetic variation.


Assuntos
Aterosclerose/genética , Ligação Genética , Estudo de Associação Genômica Ampla , Mutação INDEL/genética , Resistência à Insulina/genética , Americanos Mexicanos/genética , Adulto , Demografia , Família , Feminino , Frequência do Gene/genética , Genoma Humano , Humanos , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
4.
Kidney Int ; 94(3): 599-607, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29885931

RESUMO

African Americans carrying two apolipoprotein L1 gene (APOL1) renal risk variants have a high risk for nephropathy. However, only a minority develops end-stage renal disease (ESRD). Hence, modifying factors likely contribute to initiation of kidney disease such as endogenous (HIV infection) or exogenous (interferon treatment) environmental modifiers. In this report, genome-wide association studies and a meta-analysis were performed to identify novel loci for nondiabetic ESRD in African Americans and to detect genetic modifiers in APOL1-associated nephropathy. Two African American cohorts were analyzed, 1749 nondiabetic ESRD cases and 1136 controls from Wake Forest and 901 lupus nephritis (LN)-ESRD cases and 520 controls with systemic lupus erythematosus but lacking nephropathy from the LN-ESRD Consortium. Association analyses adjusting for APOL1 G1/G2 renal-risk variants were completed and stratified by APOL1 risk genotype status. Individual genome-wide association studies and meta-analysis results of all 2650 ESRD cases and 1656 controls did not detect significant genome-wide associations with ESRD beyond APOL1. Similarly, no single nucleotide polymorphism showed significant genome-wide evidence of an interaction with APOL1 risk variants. Thus, although variants with small individual effects cannot be ruled out and are likely to exist, our results suggest that APOL1-environment interactions may be of greater clinical importance in triggering nephropathy in African Americans than APOL1 interactions with other single nucleotide polymorphisms.


Assuntos
Apolipoproteína L1/genética , Negro ou Afro-Americano/genética , Interação Gene-Ambiente , Falência Renal Crônica/genética , Nefrite Lúpica/genética , Estudos de Casos e Controles , Progressão da Doença , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Falência Renal Crônica/patologia , Nefrite Lúpica/patologia , Polimorfismo de Nucleotídeo Único
5.
Ann Hum Genet ; 81(2): 49-58, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28067407

RESUMO

Family-based methods are a potentially powerful tool to identify trait-defining genetic variants in extended families, particularly when used to complement conventional association analysis. We utilized two-point linkage analysis and single variant association analysis to evaluate whole exome sequencing (WES) data from 1205 Hispanic Americans (78 families) from the Insulin Resistance Atherosclerosis Family Study. WES identified 211,612 variants above the minor allele frequency threshold of ≥0.005. These variants were tested for linkage and/or association with 50 cardiometabolic traits after quality control checks. Two-point linkage analysis yielded 10,580,600 logarithm of the odds (LOD) scores with 1148 LOD scores ≥3, 183 LOD scores ≥4, and 29 LOD scores ≥5. The maximal novel LOD score was 5.50 for rs2289043:T>C, in UNC5C with subcutaneous adipose tissue volume. Association analysis identified 13 variants attaining genome-wide significance (P < 5 × 10-08 ), with the strongest association between rs651821:C>T in APOA5 and triglyceride levels (P = 3.67 × 10-10 ). Overall, there was a 5.2-fold increase in the number of informative variants detected by WES compared to exome chip analysis in this population, nearly 30% of which were novel variants relative to the Database of Single Nucleotide Polymorphisms (dbSNP) build 138. Thus, integration of results from two-point linkage and single-variant association analysis from WES data enabled identification of novel signals potentially contributing to cardiometabolic traits.


Assuntos
Aterosclerose/genética , Exoma , Resistência à Insulina/genética , Adiponectina/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Aterosclerose/sangue , Feminino , Frequência do Gene , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Lipídeos/sangue , Escore Lod , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Adulto Jovem
6.
J Hum Genet ; 62(2): 175-184, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27535031

RESUMO

Linkage studies of complex genetic diseases have been largely replaced by genome-wide association studies, due in part to limited success in complex trait discovery. However, recent interest in rare and low-frequency variants motivates re-examination of family-based methods. In this study, we investigated the performance of two-point linkage analysis for over 1.6 million single-nucleotide polymorphisms (SNPs) combined with single variant association analysis to identify high impact variants, which are both strongly linked and associated with cardiometabolic traits in up to 1414 Hispanics from the Insulin Resistance Atherosclerosis Family Study (IRASFS). Evaluation of all 50 phenotypes yielded 83 557 000 LOD (logarithm of the odds) scores, with 9214 LOD scores ⩾3.0, 845 ⩾4.0 and 89 ⩾5.0, with a maximal LOD score of 6.49 (rs12956744 in the LAMA1 gene for tumor necrosis factor-α (TNFα) receptor 2). Twenty-seven variants were associated with P<0.005 as well as having an LOD score >4, including variants in the NFIB gene under a linkage peak with TNFα receptor 2 levels on chromosome 9. Linkage regions of interest included a broad peak (31 Mb) on chromosome 1q with acute insulin response (max LOD=5.37). This region was previously documented with type 2 diabetes in family-based studies, providing support for the validity of these results. Overall, we have demonstrated the utility of two-point linkage and association in comprehensive genome-wide array-based SNP genotypes.


Assuntos
Diabetes Mellitus Tipo 2/genética , Ligação Genética/genética , Resistência à Insulina/genética , Laminina/genética , Fatores de Transcrição NFI/genética , Fator de Necrose Tumoral alfa/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Hispânico ou Latino/genética , Humanos , Escore Lod , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Adulto Jovem
7.
Hum Genet ; 135(11): 1251-1262, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27461219

RESUMO

African Americans (AAs) are at higher risk for developing end-stage kidney disease (ESKD) compared to European Americans. Genome-wide association studies have identified variants associated with diabetic and non-diabetic kidney diseases. Nephropathy loci, including SLC7A9, UMOD, and SHROOM3, have been implicated in the maintenance of normal glomerular and renal tubular structure and function. Herein, 47 genes important in podocyte, glomerular basement membrane, mesangial cell, mesangial matrix, renal tubular cell, and renal interstitium structure were examined for association with type 2 diabetes (T2D)-attributed ESKD in AAs. Single-variant association analysis was performed in the discovery stage, including 2041 T2D-ESKD cases and 1140 controls (non-diabetic, non-nephropathy). Discrimination analyses in 667 T2D cases-lacking nephropathy excluded T2D-associated SNPs. Nominal associations were tested in an additional 483 T2D-ESKD cases and 554 controls in the replication stage. Meta-analysis of 4218 discovery and replication samples revealed three significant associations with T2D-ESKD at CD2AP and MMP2 (P corr < 0.05 corrected for effective number of SNPs in each locus). Removal of APOL1 renal-risk genotype carriers revealed additional association at five loci, TTC21B, COL4A3, NPHP3-ACAD11, CLDN8, and ARHGAP24 (P corr < 0.05). Genetic variants at COL4A3, CLDN8, and ARHGAP24 were potentially pathogenic. Gene-based associations revealed suggestive significant aggregate effects of coding variants at four genes. Our findings suggest that genetic variation in kidney structure-related genes may contribute to T2D-attributed ESKD in the AA population.


Assuntos
Diabetes Mellitus Tipo 2/genética , Nefropatias Diabéticas/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Falência Renal Crônica/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Adulto , Idoso , Proteínas do Citoesqueleto/genética , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/patologia , Nefropatias Diabéticas/patologia , Feminino , Genótipo , Membrana Basal Glomerular/metabolismo , Membrana Basal Glomerular/ultraestrutura , Haplótipos , Humanos , Falência Renal Crônica/complicações , Falência Renal Crônica/patologia , Túbulos Renais Distais/metabolismo , Túbulos Renais Distais/ultraestrutura , Masculino , Metaloproteinase 2 da Matriz/genética , Células Mesangiais/metabolismo , Células Mesangiais/ultraestrutura , Pessoa de Meia-Idade , Podócitos/metabolismo , Podócitos/ultraestrutura , Polimorfismo de Nucleotídeo Único , População Branca
8.
Prostate ; 72(4): 376-85, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21671247

RESUMO

BACKGROUND: Genome-wide association studies (GWAS) have identified approximately three dozen single nucleotide polymorphisms (SNPs) consistently associated with prostate cancer (PCa) risk. Despite the reproducibility of these associations, the molecular mechanism for most of these SNPs has not been well elaborated as most lie within non-coding regions of the genome. Androgens play a key role in prostate carcinogenesis. Recently, using ChIP-on-chip technology, 22,447 androgen receptor (AR) binding sites have been mapped throughout the genome, greatly expanding the genomic regions potentially involved in androgen-mediated activity. METHODOLOGY/PRINCIPAL FINDINGS: To test the hypothesis that sequence variants in AR binding sites are associated with PCa risk, we performed a systematic evaluation among two existing PCa GWAS cohorts; the Johns Hopkins Hospital and the Cancer Genetic Markers of Susceptibility (CGEMS) study population. We demonstrate that regions containing AR binding sites are significantly enriched for PCa risk-associated SNPs, that is, more than expected by chance alone. In addition, compared with the entire genome, these newly observed risk-associated SNPs in these regions are significantly more likely to overlap with established PCa risk-associated SNPs from previous GWAS. These results are consistent with our previous finding from a bioinformatics analysis that one-third of the 33 known PCa risk-associated SNPs discovered by GWAS are located in regions of the genome containing AR binding sites. CONCLUSIONS/SIGNIFICANCE: The results to date provide novel statistical evidence suggesting an androgen-mediated mechanism by which some PCa associated SNPs act to influence PCa risk. However, these results are hypothesis generating and ultimately warrant testing through in-depth molecular analyses.


Assuntos
Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética , Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Sequência de Bases , Sítios de Ligação/genética , Estudos de Casos e Controles , Estudos de Coortes , DNA de Neoplasias/genética , Humanos , Masculino , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Fatores de Risco
9.
BMC Med Genet ; 13: 46, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22712434

RESUMO

BACKGROUND: Genetic variants are likely to contribute to a portion of prostate cancer risk. Full elucidation of the genetic etiology of prostate cancer is difficult because of incomplete penetrance and genetic and phenotypic heterogeneity. Current evidence suggests that genetic linkage to prostate cancer has been found on several chromosomes including the X; however, identification of causative genes has been elusive. METHODS: Parametric and non-parametric linkage analyses were performed using 26 microsatellite markers in each of 11 groups of multiple-case prostate cancer families from the International Consortium for Prostate Cancer Genetics (ICPCG). Meta-analyses of the resultant family-specific linkage statistics across the entire 1,323 families and in several predefined subsets were then performed. RESULTS: Meta-analyses of linkage statistics resulted in a maximum parametric heterogeneity lod score (HLOD) of 1.28, and an allele-sharing lod score (LOD) of 2.0 in favor of linkage to Xq27-q28 at 138 cM. In subset analyses, families with average age at onset less than 65 years exhibited a maximum HLOD of 1.8 (at 138 cM) versus a maximum regional HLOD of only 0.32 in families with average age at onset of 65 years or older. Surprisingly, the subset of families with only 2-3 affected men and some evidence of male-to-male transmission of prostate cancer gave the strongest evidence of linkage to the region (HLOD = 3.24, 134 cM). For this subset, the HLOD was slightly increased (HLOD = 3.47 at 134 cM) when families used in the original published report of linkage to Xq27-28 were excluded. CONCLUSIONS: Although there was not strong support for linkage to the Xq27-28 region in the complete set of families, the subset of families with earlier age at onset exhibited more evidence of linkage than families with later onset of disease. A subset of families with 2-3 affected individuals and with some evidence of male to male disease transmission showed stronger linkage signals. Our results suggest that the genetic basis for prostate cancer in our families is much more complex than a single susceptibility locus on the X chromosome, and that future explorations of the Xq27-28 region should focus on the subset of families identified here with the strongest evidence of linkage to this region.


Assuntos
Cromossomos Humanos X , Neoplasias da Próstata/genética , Alelos , Ligação Genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Repetições de Microssatélites
10.
Mol Metab ; 54: 101342, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34563731

RESUMO

OBJECTIVE: Identify and characterize circulating metabolite profiles associated with adiposity to inform precision medicine. METHODS: Untargeted plasma metabolomic profiles in the Insulin Resistance Atherosclerosis Family Study (IRASFS) Mexican American cohort (n = 1108) were analyzed for association with anthropometric (body mass index, BMI; waist circumference, WC; waist-to-hip ratio, WHR) and computed tomography measures (visceral adipose tissue, VAT; subcutaneous adipose tissue, SAT; visceral-to-subcutaneous ratio, VSR) of adiposity. Genetic data, inclusive of genome-wide array-based genotyping, whole exome sequencing (WES) and whole genome sequencing (WGS), were evaluated to identify the genetic contributors. Phenotypic and genetic association signals were replicated across ancestries. Transcriptomic data were analyzed to explore the relationship between genetic and metabolomic data. RESULTS: A partially characterized metabolite, tentatively named metabolonic lactone sulfate (X-12063), was consistently associated with BMI, WC, WHR, VAT, and SAT in IRASFS Mexican Americans (PMA <2.02 × 10-27). Trait associations were replicated in IRASFS African Americans (PAA < 1.12 × 10-07). Expanded analyses revealed associations with multiple phenotypic measures of cardiometabolic health, e.g. insulin sensitivity (SI), triglycerides (TG), diastolic blood pressure (DBP) and plasminogen activator inhibitor-1 (PAI-1) in both ancestries. Metabolonic lactone sulfate levels were heritable (h2 > 0.47), and a significant genetic signal at the ZSCAN25/CYP3A5 locus (PMA = 9.00 × 10-41, PAA = 2.31 × 10-10) was observed, highlighting a putative functional variant (rs776746, CYP3A5∗3). Transcriptomic analysis in the African American Genetics of Metabolism and Expression (AAGMEx) cohort supported the association of CYP3A5 with metabolonic lactone sulfate levels (PFDR = 6.64 × 10-07). CONCLUSIONS: Variant rs776746 is associated with a decrease in the transcript levels of CYP3A5, which in turn is associated with increased metabolonic lactone sulfate levels and poor cardiometabolic health.


Assuntos
Doenças Cardiovasculares/metabolismo , Lactonas/metabolismo , Obesidade/metabolismo , Sulfatos/metabolismo , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
11.
PLoS One ; 16(5): e0251423, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34014961

RESUMO

Relative to European Americans, African Americans have lower 25-hydroxyvitamin D (25OHD) and vitamin D binding protein (VDBP) concentrations, higher 1,25-dihydroxyvitamin D (1,25(OH)2D3) concentrations and bone mineral density (BMD), and paradoxically reduced burdens of calcified atherosclerotic plaque (subclinical atherosclerosis). To identify genetic factors contributing to vitamin D and BMD measures, association analysis of >14M variants was conducted in a maximum of 697 African American-Diabetes Heart Study participants with type 2 diabetes (T2D). The most significant association signals were detected for VDBP on chromosome 4; variants rs7041 (ß = 0.44, SE = 0.019, P = 9.4x10-86) and rs4588 (ß = 0.17, SE = 0.021, P = 3.5x10-08) in the group-specific component (vitamin D binding protein) gene (GC). These variants were found to be independently associated. In addition, rs7041 was also associated with bioavailable vitamin D (BAVD; ß = 0.16, SE = 0.02, P = 3.3x10-19). Six rare variants were significantly associated with 25OHD, including a non-synonymous variant in HSPG2 (rs116788687; ß = -1.07, SE = 0.17, P = 2.2x10-10) and an intronic variant in TNIK (rs143555701; ß = -1.01, SE = 0.18, P = 9.0x10-10), both biologically related to bone development. Variants associated with 25OHD failed to replicate in African Americans from the Insulin Resistance Atherosclerosis Family Study (IRASFS). Evaluation of vitamin D metabolism and bone mineral density phenotypes in an African American population enriched for T2D could provide insight into ethnic specific differences in vitamin D metabolism and bone mineral density.


Assuntos
Densidade Óssea , Diabetes Mellitus Tipo 2/sangue , Vitamina D/análogos & derivados , Negro ou Afro-Americano/genética , Idoso , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatologia , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo Genético , Vitamina D/sangue , Vitamina D/genética , Proteína de Ligação a Vitamina D/sangue , Proteína de Ligação a Vitamina D/genética
12.
Circ Genom Precis Med ; 14(4): e003258, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34241534

RESUMO

BACKGROUND: Coronary artery calcification (CAC) and carotid artery intima-media thickness (cIMT) are measures of subclinical atherosclerosis in asymptomatic individuals and strong risk factors for cardiovascular disease. Type 2 diabetes (T2D) is an independent cardiovascular disease risk factor that accelerates atherosclerosis. METHODS: We performed meta-analyses of genome-wide association studies in up to 2500 T2D individuals of European ancestry (EA) and 1590 T2D individuals of African ancestry with or without exclusion of prevalent cardiovascular disease, for CAC measured by cardiac computed tomography, and 3608 individuals of EA and 838 individuals of African ancestry with T2D for cIMT measured by ultrasonography within the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium. RESULTS: We replicated 2 loci (rs9369640 and rs9349379 near PHACTR1 and rs10757278 near CDKN2B) for CAC and one locus for cIMT (rs7412 and rs445925 near APOE-APOC1) that were previously reported in the general EA populations. We identified one novel CAC locus (rs8000449 near CSNK1A1L/LINC00547/POSTN at 13q13.3) at P=2.0×10-8 in EA. No additional loci were identified with the meta-analyses of EA and African ancestry. The expression quantitative trait loci analysis with nearby expressed genes derived from arterial wall and metabolic tissues from the Genotype-Tissue Expression project pinpoints POSTN, encoding a matricellular protein involved in bone formation and bone matrix organization, as the potential candidate gene at this locus. In addition, we found significant associations (P<3.1×10-4) for 3 previously reported coronary artery disease loci for these subclinical atherosclerotic phenotypes (rs2891168 near CDKN2B-AS1 and rs11170820 near FLJ12825 for CAC, and rs7412 near APOE for cIMT). CONCLUSIONS: Our results provide potential biological mechanisms that could link CAC and cIMT to increased cardiovascular disease risk in individuals with T2D.


Assuntos
Aterosclerose/genética , População Negra/genética , Complicações do Diabetes/genética , Diabetes Mellitus Tipo 2/genética , Loci Gênicos , Predisposição Genética para Doença , População Branca/genética , Estudo de Associação Genômica Ampla , Humanos
13.
Prostate ; 70(7): 735-44, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20333727

RESUMO

BACKGROUND: Prostate cancer (PC) is generally believed to have a strong inherited component, but the search for susceptibility genes has been hindered by the effects of genetic heterogeneity. The recently developed sumLINK and sumLOD statistics are powerful tools for linkage analysis in the presence of heterogeneity. METHODS: We performed a secondary analysis of 1,233 PC pedigrees from the International Consortium for Prostate Cancer Genetics (ICPCG) using two novel statistics, the sumLINK and sumLOD. For both statistics, dominant and recessive genetic models were considered. False discovery rate (FDR) analysis was conducted to assess the effects of multiple testing. RESULTS: Our analysis identified significant linkage evidence at chromosome 22q12, confirming previous findings by the initial conventional analyses of the same ICPCG data. Twelve other regions were identified with genome-wide suggestive evidence for linkage. Seven regions (1q23, 5q11, 5q35, 6p21, 8q12, 11q13, 20p11-q11) are near loci previously identified in the initial ICPCG pooled data analysis or the subset of aggressive PC pedigrees. Three other regions (1p12, 8p23, 19q13) confirm loci reported by others, and two (2p24, 6q27) are novel susceptibility loci. FDR testing indicates that over 70% of these results are likely true positive findings. Statistical recombinant mapping narrowed regions to an average of 9 cM. CONCLUSIONS: Our results represent genomic regions with the greatest consistency of positive linkage evidence across a very large collection of high-risk PC pedigrees using new statistical tests that deal powerfully with heterogeneity. These regions are excellent candidates for further study to identify PC predisposition genes.


Assuntos
Ligação Genética , Linhagem , Neoplasias da Próstata/genética , Mapeamento Cromossômico , Cromossomos Humanos Par 22/genética , Predisposição Genética para Doença , Genoma Humano , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino
14.
Cancer Res ; 67(9): 4098-103, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17483320

RESUMO

The evidence for tumor suppressor genes at 8p is well supported by many somatic deletion studies and genetic linkage studies. However, it remains a challenge to pinpoint the tumor suppressor genes at 8p primarily because the implicated regions are broad. In this study, we attempted to narrow down the implicated regions by incorporating evidence from both somatic and germline studies. Using high-resolution Affymetrix arrays, we identified two small common deleted regions among 55 prostate tumors at 8p23.1 (9.8-11.5 Mb) and 8p21.3 (20.6-23.7 Mb). Interestingly, our fine mapping linkage analysis at 8p among 206 hereditary prostate cancer families also provided evidence for linkage at these two regions at 8p23.1 (5.8-11.2 Mb) and at 8p21.3 (19.6-23.9 Mb). More importantly, by combining the results from the somatic deletion analysis and genetic linkage analysis, we were able to further narrow the regions to approximately 1.4 Mb at 8p23.1 and approximately 3.1 Mb at 8p21.3. These smaller consensus regions may facilitate a more effective search for prostate cancer genes at 8p.


Assuntos
Cromossomos Humanos Par 8/genética , Sequência Consenso , Deleção de Genes , Ligação Genética , Neoplasias da Próstata/genética , Humanos , Masculino , Repetições de Microssatélites , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
15.
Diabetes ; 68(2): 441-456, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30487263

RESUMO

To identify genetic variants associated with diabetic retinopathy (DR), we performed a large multiethnic genome-wide association study. Discovery included eight European cohorts (n = 3,246) and seven African American cohorts (n = 2,611). We meta-analyzed across cohorts using inverse-variance weighting, with and without liability threshold modeling of glycemic control and duration of diabetes. Variants with a P value <1 × 10-5 were investigated in replication cohorts that included 18,545 European, 16,453 Asian, and 2,710 Hispanic subjects. After correction for multiple testing, the C allele of rs142293996 in an intron of nuclear VCP-like (NVL) was associated with DR in European discovery cohorts (P = 2.1 × 10-9), but did not reach genome-wide significance after meta-analysis with replication cohorts. We applied the Disease Association Protein-Protein Link Evaluator (DAPPLE) to our discovery results to test for evidence of risk being spread across underlying molecular pathways. One protein-protein interaction network built from genes in regions associated with proliferative DR was found to have significant connectivity (P = 0.0009) and corroborated with gene set enrichment analyses. These findings suggest that genetic variation in NVL, as well as variation within a protein-protein interaction network that includes genes implicated in inflammation, may influence risk for DR.


Assuntos
Diabetes Mellitus Tipo 2/genética , Estudo de Associação Genômica Ampla/métodos , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Retinopatia Diabética , Predisposição Genética para Doença , Genótipo , Hemoglobinas Glicadas/metabolismo , Humanos , Metanálise como Assunto , Polimorfismo de Nucleotídeo Único/genética , Ligação Proteica
16.
Kidney Int Rep ; 3(4): 867-878, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29989002

RESUMO

INTRODUCTION: Compared with European Americans, African Americans (AAs) are at higher risk for developing end-stage kidney disease (ESKD). Genome-wide association studies (GWAS) have identified >70 genetic variants associated with kidney function and chronic kidney disease (CKD) in patients with and without diabetes. However, these variants explain a small proportion of disease liability. This study examined the contribution of coding genetic variants for risk of type 2 diabetes (T2D)-attributed ESKD and advanced CKD in AAs. METHODS: Exome sequencing was performed in 456 AA T2D-ESKD cases, and 936 AA nondiabetic, non-nephropathy control individuals at the discovery stage. A mixed logistic regression model was used for association analysis. Nominal associations (P < 0.05) were replicated in an additional 2020 T2D-ESKD cases and 1121 nondiabetic, non-nephropathy control individuals. A meta-analysis combining 4533 discovery and replication samples was performed. Putative T2D-ESKD associations were tested in additional 1910 nondiabetic ESKD and 219 T2D-ESKD cases, as well as 912 AA nondiabetic non-nephropathy control individuals. RESULTS: A total of 11 suggestive T2D-ESKD associations (P < 1 x 10-4) from 8 loci (PLEKHN1, NADK, RAD51AP2, RREB1, PEX6, GRM8, PRX, APOL1) were apparent in the meta-analysis. Exclusion of APOL1 renal-risk genotype carriers identified 3 additional suggestive loci (OTUD7B, IFITM3, DLGAP5). Rs41302867 in RREB1 displayed consistent association with T2D-ESKD and nondiabetic ESKD (odds ratio: 0.47; P = 1.2 x 10-6 in 4605 all-cause ESKD and 2969 nondiabetic non-nephropathy control individuals). CONCLUSION: Our findings suggest that coding genetic variants are implicated in predisposition to T2D-ESKD in AAs.

17.
Sci Rep ; 8(1): 5603, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29618726

RESUMO

Genome-wide association studies have identified numerous variants associated with lipid levels; yet, the majority are located in non-coding regions with unclear mechanisms. In the Insulin Resistance Atherosclerosis Family Study (IRASFS), heritability estimates suggest a strong genetic basis: low-density lipoprotein (LDL, h2 = 0.50), high-density lipoprotein (HDL, h2 = 0.57), total cholesterol (TC, h2 = 0.53), and triglyceride (TG, h2 = 0.42) levels. Exome sequencing of 1,205 Mexican Americans (90 pedigrees) from the IRASFS identified 548,889 variants and association and linkage analyses with lipid levels were performed. One genome-wide significant signal was detected in APOA5 with TG (rs651821, PTG = 3.67 × 10-10, LODTG = 2.36, MAF = 14.2%). In addition, two correlated SNPs (r2 = 1.0) rs189547099 (PTG = 6.31 × 10-08, LODTG = 3.13, MAF = 0.50%) and chr4:157997598 (PTG = 6.31 × 10-08, LODTG = 3.13, MAF = 0.50%) reached exome-wide significance (P < 9.11 × 10-08). rs189547099 is an intronic SNP in FNIP2 and SNP chr4:157997598 is intronic in GLRB. Linkage analysis revealed 46 SNPs with a LOD > 3 with the strongest signal at rs1141070 (LODLDL = 4.30, PLDL = 0.33, MAF = 21.6%) in DFFB. A total of 53 nominally associated variants (P < 5.00 × 10-05, MAF ≥ 1.0%) were selected for replication in six Mexican-American cohorts (N = 3,280). The strongest signal observed was a synonymous variant (rs1160983, PLDL = 4.44 × 10-17, MAF = 2.7%) in TOMM40. Beyond primary findings, previously reported lipid loci were fine-mapped using exome sequencing in IRASFS. These results support that exome sequencing complements and extends insights into the genetics of lipid levels.


Assuntos
Aterosclerose/patologia , Variação Genética , Lipídeos/sangue , Americanos Mexicanos/genética , Adulto , Apolipoproteína A-V/genética , Aterosclerose/genética , Proteínas de Transporte/genética , Feminino , Ligação Genética , Estudo de Associação Genômica Ampla , Humanos , Resistência à Insulina/genética , Lipoproteínas HDL/sangue , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Triglicerídeos/sangue , Sequenciamento do Exoma
18.
Cancer Epidemiol Biomarkers Prev ; 14(11 Pt 1): 2563-8, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16284379

RESUMO

It is widely hypothesized that the interactions of multiple genes influence individual risk to prostate cancer. However, current efforts at identifying prostate cancer risk genes primarily rely on single-gene approaches. In an attempt to fill this gap, we carried out a study to explore the joint effect of multiple genes in the inflammation pathway on prostate cancer risk. We studied 20 genes in the Toll-like receptor signaling pathway as well as several cytokines. For each of these genes, we selected and genotyped haplotype-tagging single nucleotide polymorphisms (SNP) among 1,383 cases and 780 controls from the CAPS (CAncer Prostate in Sweden) study population. A total of 57 SNPs were included in the final analysis. A data mining method, multifactor dimensionality reduction, was used to explore the interaction effects of SNPs on prostate cancer risk. Interaction effects were assessed for all possible n SNP combinations, where n = 2, 3, or 4. For each n SNP combination, the model providing lowest prediction error among 100 cross-validations was chosen. The statistical significance levels of the best models in each n SNP combination were determined using permutation tests. A four-SNP interaction (one SNP each from IL-10, IL-1RN, TIRAP, and TLR5) had the lowest prediction error (43.28%, P = 0.019). Our ability to analyze a large number of SNPs in a large sample size is one of the first efforts in exploring the effect of high-order gene-gene interactions on prostate cancer risk, and this is an important contribution to this new and quickly evolving field.


Assuntos
Inflamação , Polimorfismo de Nucleotídeo Único , Neoplasias da Próstata/genética , Neoplasias da Próstata/imunologia , Receptores Toll-Like/genética , Estudos de Casos e Controles , Predisposição Genética para Doença , Genótipo , Haplótipos , Humanos , Masculino , Prognóstico , Neoplasias da Próstata/etiologia , Sistema de Registros/estatística & dados numéricos , Fatores de Risco , Transdução de Sinais
20.
Diabetes ; 62(3): 965-76, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23193183

RESUMO

Type 2 diabetes (T2D) disproportionally affects African Americans (AfA) but, to date, genetic variants identified from genome-wide association studies (GWAS) are primarily from European and Asian populations. We examined the single nucleotide polymorphism (SNP) and locus transferability of 40 reported T2D loci in six AfA GWAS consisting of 2,806 T2D case subjects with or without end-stage renal disease and 4,265 control subjects from the Candidate Gene Association Resource Plus Study. Our results revealed that seven index SNPs at the TCF7L2, KLF14, KCNQ1, ADCY5, CDKAL1, JAZF1, and GCKR loci were significantly associated with T2D (P < 0.05). The strongest association was observed at TCF7L2 rs7903146 (odds ratio [OR] 1.30; P = 6.86 × 10⁻8). Locus-wide analysis demonstrated significant associations (P(emp) < 0.05) at regional best SNPs in the TCF7L2, KLF14, and HMGA2 loci as well as suggestive signals in KCNQ1 after correction for the effective number of SNPs at each locus. Of these loci, the regional best SNPs were in differential linkage disequilibrium (LD) with the index and adjacent SNPs. Our findings suggest that some loci discovered in prior reports affect T2D susceptibility in AfA with similar effect sizes. The reduced and differential LD pattern in AfA compared with European and Asian populations may facilitate fine mapping of causal variants at loci shared across populations.


Assuntos
Diabetes Mellitus Tipo 2/genética , Loci Gênicos , Polimorfismo de Nucleotídeo Único , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Negro ou Afro-Americano , Idoso , Estudos de Casos e Controles , Estudos de Coortes , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA