RESUMO
OBJECTIVES: The adult-onset focal dystonias are characterized by over-active muscles leading to abnormal movements. For most cases, the etiology and pathogenesis remain unknown. In the current study, unbiased proteomics methods were used to identify potential changes in blood plasma proteins. METHODS: A large-scale unbiased proteomics screen was used to compare proteins (N = 6,345) in blood plasma of normal healthy controls (N = 49) with adult-onset focal dystonia (N = 143) consisting of specific subpopulations of cervical dystonia (N = 45), laryngeal dystonia (N = 49), and blepharospasm (N = 49). Pathway analyses were conducted to identify relevant biological pathways. Finally, protein changes were used to build a prediction model for dystonia. RESULTS: After correction for multiple comparisons, 15 proteins were associated with adult-onset focal dystonia. Subgroup analyses revealed some proteins were shared across the dystonia subgroups while others were unique to 1 subgroup. The top biological pathways involved changes in the immune system, metal ion transport, and reactive oxygen species. A 4-protein model showed high accuracy in discriminating control individuals from dystonia cases [average area under the curve (AUC) = 0.89]. INTERPRETATION: These studies provide novel insights into the etiopathogenesis of dystonia, as well as novel potential biomarkers. ANN NEUROL 2024;96:110-120.
Assuntos
Distúrbios Distônicos , Proteômica , Humanos , Proteômica/métodos , Feminino , Masculino , Distúrbios Distônicos/sangue , Distúrbios Distônicos/diagnóstico , Pessoa de Meia-Idade , Adulto , Idoso , Biomarcadores/sangue , Proteínas Sanguíneas/metabolismoRESUMO
BACKGROUND: Blepharospasm is treated with botulinum toxin, but obtaining satisfactory results is sometimes challenging. OBJECTIVE: The aim is to conduct an exploratory trial of oral dipraglurant for blepharospasm. METHODS: This study was an exploratory, phase 2a, randomized, double-blind, placebo-controlled trial of 15 participants who were assigned to receive a placebo or dipraglurant (50 or 100 mg) and assessed over 2 days, 1 and 2 hours following dosing. Outcome measures included multiple scales rated by clinicians or participants, digital video, and a wearable sensor. RESULTS: Dipraglurant was well tolerated, with no obvious impact on any of the measurement outcomes. Power analyses suggested fewer subjects would be required for studies using a within-subject versus independent group design, especially for certain measures. Some outcome measures appeared more suitable than others. CONCLUSION: Although dipraglurant appeared well tolerated, it did not produce a trend for clinical benefit. The results provide valuable information for planning further trials in blepharospasm. © 2024 International Parkinson and Movement Disorder Society.
Assuntos
Blefarospasmo , Humanos , Blefarospasmo/tratamento farmacológico , Método Duplo-Cego , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Resultado do TratamentoRESUMO
BACKGROUND: Marijuana's putative anti-inflammatory properties may benefit HIV-associated comorbidities. How recreational marijuana use affects gene expression in peripheral blood cells (PBC) among youth with HIV-1 (YWH) is unknown. APPROACH: YWH with defined substance use (n = 54) receiving similar antiretroviral therapy (ART) were assigned to one of four analysis groups: YWH with detectable plasma HIV-1 (> 50 RNA copies/ml) who did not use substances (H+V+S-), and YWH with undetectable plasma HIV-1 who did not use substances (H+V-S-), or used marijuana alone (H+V-S+[M]), or marijuana in combination with tobacco (H+V-S+[M/T]). Non-substance using youth without HIV infection (H-S-, n = 25) provided a reference group. PBC mRNA was profiled by Affymetrix GeneChip Human Genome U133 Plus 2.0 Array. Differentially expressed genes (DEG) within outcome groups were identified by Significance Analysis of Microarrays and used for Hierarchical Clustering, Principal Component Analysis, and Ingenuity Pathways Analysis. RESULTS: HIV-1 replication resulted in > 3000 DEG involving 27 perturbed pathways. Viral suppression reduced DEG to 313, normalized all 27 pathways, and down-regulated two additional pathways, while marijuana use among virally suppressed YWH resulted in 434 DEG and no perturbed pathways. Relative to H+V-S-, multiple DEG normalized in H+V-S+[M]. In contrast, H+V-S+[M/T] had 1140 DEG and 10 dysregulated pathways, including multiple proinflammatory genes and six pathways shared by H+V+S-. CONCLUSIONS: YWH receiving ART display unique transcriptome bioprofiles based on viral replication and substance use. In the context of HIV suppression, marijuana use, alone or combined with tobacco, has opposing effects on inflammatory gene expression.
Assuntos
Cannabis , Infecções por HIV , HIV-1 , Transtornos Relacionados ao Uso de Substâncias , Produtos do Tabaco , Adolescente , Infecções por HIV/tratamento farmacológico , HIV-1/genética , HumanosRESUMO
BACKGROUND: Immunosurveillance of the central nervous system (CNS) is vital to resolve infection and injury. However, immune activation within the CNS in the setting of chronic viral infections, such as HIV-1, is strongly linked to progressive neurodegeneration and cognitive decline. Establishment of HIV-1 in the CNS early following infection underscores the need to delineate features of acute CNS immune activation, as these early inflammatory events may mediate neurodegenerative processes. Here, we focused on elucidating molecular programs of neuroinflammation in brain regions based on vulnerability to neuroAIDS and/or neurocognitive decline. To this end, we assessed transcriptional profiles within the subcortical white matter of the pre-frontal cortex (PFCw), as well as synapse dense regions from hippocampus, superior temporal cortex, and caudate nucleus, in rhesus macaques following infection with Simian/Human Immunodeficiency Virus (SHIV.C.CH505). METHODS: We performed RNA extraction and sequenced RNA isolated from 3 mm brain punches. Viral RNA was quantified in the brain and cerebrospinal fluid by RT-qPCR assays targeting SIV Gag. Neuroinflammation was assessed by flow cytometry and multiplex ELISA assays. RESULTS: RNA sequencing and flow cytometry data demonstrated immune surveillance of the rhesus CNS by innate and adaptive immune cells during homeostasis. Following SHIV infection, viral entry and integration within multiple brain regions demonstrated vulnerabilities of key cognitive and motor function brain regions to HIV-1 during the acute phase of infection. SHIV-induced transcriptional alterations were concentrated to the PFCw and STS with upregulation of gene expression pathways controlling innate and T-cell inflammatory responses. Within the PFCw, gene modules regulating microglial activation and T cell differentiation were induced at 28 days post-SHIV infection, with evidence for stimulation of immune effector programs characteristic of neuroinflammation. Furthermore, enrichment of pathways regulating mitochondrial respiratory capacity, synapse assembly, and oxidative and endoplasmic reticulum stress were observed. These acute neuroinflammatory features were substantiated by increased influx of activated T cells into the CNS. CONCLUSIONS: Our data show pervasive immune surveillance of the rhesus CNS at homeostasis and reveal perturbations of important immune, neuronal, and synaptic pathways within key anatomic regions controlling cognition and motor function during acute HIV infection. These findings provide a valuable framework to understand early molecular features of HIV associated neurodegeneration.
Assuntos
Infecções por HIV , HIV-1 , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Substância Branca , Animais , Lobo Frontal , HIV-1/genética , Humanos , Macaca mulatta/genética , RNA Viral , Carga ViralRESUMO
Lesch-Nyhan disease (LND) is a neurodevelopmental disorder caused by variants in the HPRT1 gene, which encodes the enzyme hypoxanthine-guanine phosphoribosyl transferase (HGprt). HGprt deficiency provokes numerous metabolic changes which vary among different cell types, making it unclear which changes are most relevant for abnormal neural development. To begin to elucidate the consequences of HGprt deficiency for developing human neurons, neural stem cells (NSCs) were prepared from 6 induced pluripotent stem cell (iPSC) lines from individuals with LND and compared to 6 normal healthy controls. For all 12 lines, gene expression profiles were determined by RNA-seq and protein expression profiles were determined by shotgun proteomics. The LND lines revealed significant changes in expression of multiple genes and proteins. There was little overlap in findings between iPSCs and NSCs, confirming the impact of HGprt deficiency depends on cell type. For NSCs, gene expression studies pointed towards abnormalities in WNT signaling, which is known to play a role in neural development. Protein expression studies pointed to abnormalities in the mitochondrial F0F1 ATPase, which plays a role in maintaining cellular energy. These studies point to some mechanisms that may be responsible for abnormal neural development in LND.
Assuntos
Síndrome de Lesch-Nyhan , Células-Tronco Neurais , Humanos , Síndrome de Lesch-Nyhan/genética , Síndrome de Lesch-Nyhan/metabolismo , Hipoxantina Fosforribosiltransferase/genética , Hipoxantina Fosforribosiltransferase/metabolismo , Guanina/metabolismo , Adenosina Trifosfatases , HipoxantinasRESUMO
Numerous studies have linked Parkinson's disease (PD) with low levels of uric acid (UA). Low UA has been associated with the risk of developing PD, and its progression and severity. The biological mechanisms underlying these relationships have never been firmly established. The most frequently proposed mechanism is that UA is an antioxidant. Low UA is thought to predispose to oxidative stress, which contributes to dopamine neuron degeneration, and leads to initial appearance of symptoms of PD and its worsening over time. Several recent studies have questioned this explanation. In this review, we describe the biology of UA, its many links with PD, evidence regarding UA as an antioxidant, and we question whether UA causes PD or contributes to its progression. We also address the possibility that something about PD causes low UA (reverse causation) or that low UA is a biomarker of some other more relevant mechanism in PD. We hope the evidence provided here will stimulate additional studies to better understand the links between UA and PD. Elucidating these mechanisms remains important, because they may provide new insights into the pathogenesis of PD or novel approaches to treatments. © 2022 International Parkinson and Movement Disorder Society.
Assuntos
Doença de Parkinson , Ácido Úrico , Humanos , Doença de Parkinson/complicações , Antioxidantes , Biomarcadores , Estresse OxidativoRESUMO
Generating durable humoral immunity through vaccination depends upon effective interactions of follicular helper T (Tfh) cells with germinal center (GC) B cells. Th1 polarization of Tfh cells is an important process shaping the success of Tfh-GC B cell interactions by influencing costimulatory and cytokine-dependent Tfh help to B cells. However, the question remains as to whether adjuvant-dependent modulation of Tfh cells enhances HIV-1 vaccine-induced antienvelope (anti-Env) antibody responses. We investigated whether an HIV-1 vaccine platform designed to increase the number of Th1-polarized Tfh cells enhances the magnitude and quality of anti-Env antibodies. Utilizing a novel interferon-induced protein 10 (IP-10)-adjuvanted HIV-1 DNA prime followed by a monophosphoryl lipid A and QS-21 (MPLA+QS-21)-adjuvanted Env protein boost (DIP-10 PALFQ) in macaques, we observed higher anti-Env serum IgG titers with greater cross-clade reactivity, specificity for V1V2, and effector functions than in macaques primed with DNA lacking IP-10 and boosted with MPLA-plus-alum-adjuvanted Env protein (DPALFA) The DIP-10 PALFQ vaccine regimen elicited higher anti-Env IgG1 and lower IgG4 antibody levels in serum, showing for the first time that adjuvants can dramatically impact the IgG subclass profile in macaques. The DIP-10 PALFQ regimen also increased vaginal and rectal IgA antibodies to a greater extent. Within lymph nodes, we observed augmented GC B cell responses and the promotion of Th1 gene expression profiles in GC Tfh cells. The frequency of GC Tfh cells correlated with both the magnitude and avidity of anti-Env serum IgG. Together, these data suggest that adjuvant-induced stimulation of Th1-Tfh cells is an effective strategy for enhancing the magnitude and quality of anti-Env antibody responses.IMPORTANCE The results of the RV144 trial demonstrated that vaccination could prevent HIV transmission in humans and that longevity of anti-Env antibodies may be key to this protection. Efforts to improve upon the prime-boost vaccine regimen used in RV144 have indicated that booster immunizations can increase serum anti-Env antibody titers but only transiently. Poor antibody durability hampers efforts to develop an effective HIV-1 vaccine. This study was designed to identify the specific elements involved in the immunological mechanism necessary to produce robust HIV-1-specific antibodies in rhesus macaques. By clearly defining immune-mediated pathways that improve the magnitude and functionality of the anti-HIV-1 antibody response, we will have the foundation necessary for the rational development of an HIV-1 vaccine.
Assuntos
Vacinas contra a AIDS/farmacologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Imunização Secundária , Imunoglobulina G/imunologia , Células Th1/imunologia , Vacinas contra a AIDS/imunologia , Adjuvantes Imunológicos/farmacologia , Animais , Linfócitos B/imunologia , Linfócitos B/patologia , Feminino , Centro Germinativo/imunologia , Centro Germinativo/patologia , Humanos , Lipídeo A/análogos & derivados , Lipídeo A/farmacologia , Macaca mulatta , Saponinas/farmacologia , Células Th1/patologiaRESUMO
Dystonia is characterized by involuntary muscle contractions that cause debilitating twisting movements and postures. Although dysfunction of the basal ganglia, a brain region that mediates movement, is implicated in many forms of dystonia, the underlying mechanisms are unclear. The inherited metabolic disorder DOPA-responsive dystonia is considered a prototype for understanding basal ganglia dysfunction in dystonia because it is caused by mutations in genes necessary for the synthesis of the neurotransmitter dopamine, which mediates the activity of the basal ganglia. Therefore, to reveal abnormal striatal cellular processes and pathways implicated in dystonia, we used an unbiased proteomic approach in a knockin mouse model of DOPA-responsive dystonia, a model in which the striatum is known to play a central role in the expression of dystonia. Fifty-seven of the 1805 proteins identified were differentially regulated in DOPA-responsive dystonia mice compared to control mice. Most differentially regulated proteins were associated with gene ontology terms that implicated either mitochondrial or synaptic dysfunction whereby proteins associated with mitochondrial function were generally over-represented and proteins associated with synaptic function were largely under-represented. Remarkably, nearly 20% of the differentially regulated striatal proteins identified in our screen are associated with pathogenic variants that cause inherited disorders with dystonia as a sign in humans suggesting shared mechanisms across many different forms of dystonia.
Assuntos
Distúrbios Distônicos/genética , Proteômica/métodos , Animais , Gânglios da Base/metabolismo , Gânglios da Base/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Distúrbios Distônicos/fisiopatologia , Feminino , Técnicas de Introdução de Genes , Ontologia Genética , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Muscular diseases lead to muscle fiber degeneration, impairment of mobility, and in some cases premature death. Many of these muscular diseases are largely idiopathic. The goal of this study was to identify biomarkers based on their functional role and possible mechanisms of pathogenesis, specific to individual muscular disease. We analyzed the muscle transcriptome from five major muscular diseases: acute quadriplegic myopathy (AQM), amyotrophic lateral sclerosis (ALS), mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS), dermatomyositis (DM) and polymyositis (PM) using pairwise statistical comparison to identify uniquely regulated genes in each muscular disease. The genome-wide information encoded in the transcriptome provided biomarkers and functional insights into dysregulation in each muscular disease. The analysis showed that the dysregulation of genes in forward membrane pathway, responsible for transmitting action potential from neural excitation, is unique to AQM, while the dysregulation of myofibril genes, determinant of the mechanical properties of muscle, is unique to ALS, dysregulation of ER protein processing, responsible for correct protein folding, is unique to DM, and upregulation of immune response genes is unique to PM. We have identified biomarkers specific to each muscular disease which can be used for diagnostic purposes.
Assuntos
Estudos de Associação Genética/métodos , Doenças Musculares/genética , Doenças Musculares/patologia , Biomarcadores/análise , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Modelos Estatísticos , Músculos/metabolismo , Músculos/patologia , Especificidade de Órgãos , Análise Serial de TecidosRESUMO
SUMMARY: The human complement system is increasingly perceived as an intricate protein network of effectors, inhibitors and regulators that drives critical processes in health and disease and extensively communicates with associated physiological pathways ranging from immunity and inflammation to homeostasis and development. A steady stream of experimental data reveals new fascinating connections at a rapid pace; although opening unique opportunities for research discoveries, the comprehensiveness and large diversity of experimental methods, nomenclatures and publication sources renders it highly challenging to keep up with the essential findings. With the Complement Map Database (CMAP), we have created a novel and easily accessible research tool to assist the complement community and scientists from related disciplines in exploring the complement network and discovering new connections. AVAILABILITY: http://www.complement.us/cmap. CONTACT: lambris@upenn.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Proteínas do Sistema Complemento/metabolismo , Bases de Dados de Proteínas , Complemento C5a/metabolismo , Humanos , ProteínasRESUMO
BACKGROUND: Macrophage activation by lipopolysaccharide and adenosine triphosphate (ATP) has been studied extensively because this model system mimics the physiological context of bacterial infection and subsequent inflammatory responses. Previous studies on macrophages elucidated the biological roles of caspase-1 in post-translational activation of interleukin-1ß and interleukin-18 in inflammation and apoptosis. However, the results from these studies focused only on a small number of factors. To better understand the host response, we have performed a high-throughput study of Kdo2-lipid A (KLA)-primed macrophages stimulated with ATP. RESULTS: The study suggests that treating mouse bone marrow-derived macrophages with KLA and ATP produces 'synergistic' effects that are not seen with treatment of KLA or ATP alone. The synergistic regulation of genes related to immunity, apoptosis and lipid metabolism is observed in a time-dependent manner. The synergistic effects are produced by nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) and activator protein (AP)-1 through regulation of their target cytokines. The synergistically regulated cytokines then activate signal transducer and activator of transcription (STAT) factors that result in enhanced immunity, apoptosis and lipid metabolism; STAT1 enhances immunity by promoting anti-microbial factors; and STAT3 contributes to downregulation of cell cycle and upregulation of apoptosis. STAT1 and STAT3 also regulate glycerolipid and eicosanoid metabolism, respectively. Further, western blot analysis for STAT1 and STAT3 showed that the changes in transcriptomic levels were consistent with their proteomic levels. In summary, this study shows the synergistic interaction between the toll-like receptor and purinergic receptor signaling during macrophage activation on bacterial infection. AVAILABILITY: Time-course data of transcriptomics and lipidomics can be queried or downloaded from http://www.lipidmaps.org. CONTACT: shankar@ucsd.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Apoptose/genética , Perfilação da Expressão Gênica , Metabolismo dos Lipídeos/genética , Ativação de Macrófagos/genética , Macrófagos/imunologia , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Ciclo Celular/genética , Citocinas/genética , Citocinas/metabolismo , Imunidade/genética , Lipopolissacarídeos/imunologia , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Proteômica , Transdução de Sinais , Receptores Toll-Like/metabolismoRESUMO
Striatal dysfunction is implicated in many forms of dystonia, including idiopathic, inherited and iatrogenic dystonias. The striatum is comprised largely of GABAergic spiny projection neurons (SPNs) that are defined by their long-range efferents. Direct SPNs (dSPNs) project to the internal globus pallidus/substantia nigra reticulata whereas indirect pathway SPNs (iSPNs) project to the external pallidum; the concerted activity of both SPN subtypes modulates movement. Convergent results from genetic, imaging and physiological studies in patients suggest that abnormalities of both dSPNs and iSPNs contribute to the expression of dystonia, but the molecular adaptations underlying these abnormalities are not known. Here we provide a comprehensive analysis of SPN cell-type-specific molecular signatures in a model of DOPA-responsive dystonia (DRD mice), which is caused by gene defects that reduce dopamine neurotransmission, resulting in dystonia that is specifically associated with striatal dysfunction. Individually profiling the translatome of dSPNs and iSPNs using translating ribosome affinity purification with RNA-seq revealed hundreds of differentially translating mRNAs in each SPN subtype in DRD mice, yet there was little overlap between the dysregulated genes in dSPNs and iSPNs. Despite the paucity of shared adaptations, a disruption in glutamatergic signaling was predicted for both dSPNs and iSPNs. Indeed, we found that both AMPA and NMDA receptor-mediated currents were enhanced in dSPNs but diminished in iSPNs in DRD mice. The pattern of mRNA dysregulation was specific to dystonia as the adaptations in DRD mice were distinct from those in parkinsonian mice where the dopamine deficit occurs in adults, suggesting that the phenotypic outcome is dependent on both the timing of the dopaminergic deficit and the SPN-specific adaptions. We leveraged the unique molecular signatures of dSPNs and iSPNs in DRD mice to identify biochemical mechanisms that may be targets for therapeutics, including LRRK2 inhibition. Administration of the LRRK2 inhibitor MLi-2 ameliorated the dystonia in DRD mice suggesting a novel target for therapeutics and demonstrating that the delineation of cell-type-specific molecular signatures provides a powerful approach to revealing both CNS dysfunction and therapeutic targets in dystonia.
RESUMO
The acquisition of invasive properties is a prerequisite for tumor progression and metastasis. Molecular subtypes of KRAS-driven lung cancer exhibit distinct modes of invasion that contribute to unique growth properties and therapeutic susceptibilities. Despite this, pre-clinical strategies designed to exploit growth within the context of invasion are lacking. To address this, we designed an experimental system to screen for targetable signaling pathways linked to active early 3D invasion phenotypes in different molecular subtypes of KRAS-driven lung adenocarcinoma (LUAD). Combined live-cell imaging of human bronchial epithelial cells in a 3D invasion matrix and transcriptomic profiling identified mutant LKB1-specific upregulation of BMP6. LKB1 loss increased BMP6 signaling, which induced the canonical iron regulatory hormone hepcidin. Intact LKB1 was necessary to maintain BMP6 signaling homeostasis and restrict ALK2/BMP6-fueled growth. Pre-clinical studies in a Kras/Lkb1-mutant syngeneic mouse model and in a xenograft model showed potent growth suppression by inhibiting the ALK2/BMP6 signaling axis with single agent inhibitors that are currently in clinical trials. Lastly, BMP6 expression was elevated in LKB1-mutant early-stage lung cancer patient tumors. These results are consistent with a model where LKB1 acts as a 'brake' to iron regulated growth and suggest that ALK2 inhibition can be used for patients with LKB1-mutant tumors.
RESUMO
BACKGROUND: Although there are many possible causes for cervical dystonia (CD), a specific etiology cannot be identified in most cases. Prior studies have suggested a relationship between autoimmune disease and some cases of CD, pointing to possible immunological mechanisms. OBJECTIVE: The goal was to explore the potential role of multiple different immunological mechanisms in CD. METHODS: First, a broad screening test compared neuronal antibodies in controls and CD. Second, unbiased blood plasma proteomics provided a broad screen for potential biologic differences between controls and CD. Third, a multiplex immunoassay compared 37 markers associated with immunological processes in controls and CD. Fourth, relative immune cell frequencies were investigated in blood samples of controls and CD. Finally, sequencing studies investigated the association of HLA DQB1 and DRB1 alleles in controls versus CD. RESULTS: Screens for anti-neuronal antibodies did not reveal any obvious abnormalities. Plasma proteomics pointed towards certain abnormalities of immune mechanisms, and the multiplex assay pointed more specifically towards abnormalities in T lymphocytes. Abnormal immune cell frequencies were identified for some CD cases, and these cases clustered together as a potential subgroup. Studies of HLA alleles indicated a possible association between CD and DRB1*15:03, which is reported to mediate the penetrance of autoimmune disorders. CONCLUSIONS: Altogether, the association of CD with multiple different blood-based immune measures point to abnormalities in cell-mediated immunity that may play a pathogenic role for a subgroup of individuals with CD.
Assuntos
Torcicolo , Humanos , Torcicolo/imunologia , Torcicolo/genética , Masculino , Feminino , Pessoa de Meia-Idade , Proteômica , Adulto , Idoso , Cadeias beta de HLA-DQ/genética , Cadeias HLA-DRB1/genética , Autoanticorpos/sangueRESUMO
CD4+ T cells survey and maintain immune homeostasis in the brain, yet their differentiation states and functional capabilities remain unclear. Our approach, combining single-cell transcriptomic analysis, ATAC-Seq, spatial transcriptomics, and flow cytometry, revealed a distinct subset of CCR7+ CD4+ T cells resembling lymph node central memory (TCM) cells. We observed chromatin accessibility at the CCR7, CD28, and BCL-6 loci, defining molecular features of TCM. Brain CCR7+ CD4+ T cells exhibited recall proliferation and interleukin-2 production ex vivo, showcasing their functional competence. We identified the skull bone marrow as a local niche for these cells alongside CNS border tissues. Sequestering TCM cells in lymph nodes using FTY720 led to reduced CCR7+ CD4+ T cell frequencies in the cerebrospinal fluid, accompanied by increased monocyte levels and soluble markers indicating immune activation. In macaques chronically infected with SIVCL757 and experiencing viral rebound due to cessation of antiretroviral therapy, a decrease in brain CCR7+ CD4+ T cells was observed, along with increased microglial activation and initiation of neurodegenerative pathways. Our findings highlight a role for CCR7+ CD4+ T cells in CNS immune surveillance, and their decline during chronic SIV highlights their responsiveness to neuroinflammation.
Assuntos
Encéfalo , Linfócitos T CD4-Positivos , Macaca mulatta , Receptores CCR7 , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Vírus da Imunodeficiência Símia/imunologia , Linfócitos T CD4-Positivos/imunologia , Receptores CCR7/genética , Receptores CCR7/metabolismo , Receptores CCR7/imunologia , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/virologia , Encéfalo/patologia , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/patologia , Vigilância ImunológicaRESUMO
[This corrects the article DOI: 10.1371/journal.pone.0238497.].
RESUMO
Studies of macrophage biology have been significantly advanced by the availability of cell lines such as RAW264.7 cells. However, it is unclear how these cell lines differ from primary macrophages such as thioglycolate-elicited peritoneal macrophages (TGEMs). We used the inflammatory stimulus Kdo2-lipid A (KLA) to stimulate RAW264.7 and TGEM cells. Temporal changes of lipid and gene expression levels were concomitantly measured and a systems-level analysis was performed on the fold-change data. Here we present a comprehensive comparison between the two cell types. Upon KLA treatment, both RAW264.7 and TGEM cells show a strong inflammatory response. TGEM (primary) cells show a more rapid and intense inflammatory response relative to RAW264.7 cells. DNA levels (fold-change relative to control) are reduced in RAW264.7 cells, correlating with greater downregulation of cell cycle genes. The transcriptional response suggests that the cholesterol de novo synthesis increases considerably in RAW264.7 cells, but 25-hydroxycholesterol increases considerably in TGEM cells. Overall, while RAW264.7 cells behave similarly to TGEM cells in some ways and can be used as a good model for inflammation- and immune function-related kinetic studies, they behave differently than TGEM cells in other aspects of lipid metabolism and phenotypes used as models for various disorders such as atherosclerosis.
Assuntos
Metabolismo dos Lipídeos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Tioglicolatos/farmacologia , Animais , Linhagem Celular , Citocinas/metabolismo , Perfilação da Expressão Gênica , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Transcrição Gênica/efeitos dos fármacosRESUMO
The dorsal striatum is organized into functional territories defined by corticostriatal inputs onto both direct and indirect spiny projection neurons (SPNs), the major cell types within the striatum. In addition to circuit connectivity, striatal domains are likely defined by the spatially determined transcriptomes of SPNs themselves. To identify cell-type-specific spatiomolecular signatures of direct and indirect SPNs within dorsomedial, dorsolateral, and ventrolateral dorsal striatum, we used RNA profiling in situ hybridization with probes to >98% of protein coding genes. We demonstrate that the molecular identity of SPNs is mediated by hundreds of differentially expressed genes across territories of the striatum, revealing extraordinary heterogeneity in the expression of genes that mediate synaptic function in both direct and indirect SPNs. This deep insight into the complex spatiomolecular organization of the striatum provides a foundation for understanding both normal striatal function and for dissecting region-specific dysfunction in disorders of the striatum.
Assuntos
Corpo Estriado , Interneurônios , Camundongos , Animais , Camundongos Transgênicos , Corpo Estriado/metabolismo , Neostriado , NeuritosRESUMO
The acquisition of invasive properties is a prerequisite for tumor progression and metastasis. Molecular subtypes of KRAS-driven lung cancer exhibit distinct modes of invasion that likely contribute to unique growth properties and therapeutic susceptibilities. Despite this, pre-clinical discovery strategies designed to exploit invasive phenotypes are lacking. To address this, we designed an experimental system to screen for targetable signaling pathways linked to active early invasion phenotypes in the two most prominent molecular subtypes, TP53 and LKB1, of KRAS-driven lung adenocarcinoma (LUAD). By combining live-cell imaging of human bronchial epithelial cells in a 3D invasion matrix with RNA transcriptome profiling, we identified the LKB1-specific upregulation of bone morphogenetic protein 6 (BMP6). Examination of early-stage lung cancer patients confirmed upregulation of BMP6 in LKB1-mutant lung tumors. At the molecular level, we find that the canonical iron regulatory hormone Hepcidin is induced via BMP6 signaling upon LKB1 loss, where intact LKB1 kinase activity is necessary to maintain signaling homeostasis. Furthermore, pre-clinical studies in a novel Kras/Lkb1-mutant syngeneic mouse model show that potent growth suppression was achieved by inhibiting the ALK2/BMP6 signaling axis with single agents that are currently in clinical trials. We show that alterations in the iron homeostasis pathway are accompanied by simultaneous upregulation of ferroptosis protection proteins. Thus, LKB1 is sufficient to regulate both the 'gas' and 'breaks' to finely tune iron-regulated tumor progression.
RESUMO
CD4 T cells survey and maintain immune homeostasis in the brain, yet their differentiation states and functional capabilities remain unclear. Our approach, combining single-cell transcriptomic analysis, ATAC-seq, spatial transcriptomics, and flow cytometry, revealed a distinct subset of CCR7+ CD4 T cells resembling lymph node central memory (T CM ) cells. We observed chromatin accessibility at the CCR7, CD28, and BCL-6 loci, defining molecular features of T CM . Brain CCR7+ CD4 T cells exhibited recall proliferation and interleukin-2 production ex vivo, showcasing their functional competence. We identified the skull bone marrow as a local niche for these cells alongside other CNS border tissues. Sequestering T CM cells in lymph nodes using FTY720 led to reduced CCR7+ CD4 T cell frequencies in the cerebrospinal fluid, accompanied by increased monocyte levels and soluble markers indicating immune activation. In macaques chronically infected with SIVCL57 and experiencing viral rebound due to cessation of antiretroviral therapy, a decrease in brain CCR7+ CD4 T cells was observed, along with increased microglial activation and initiation of neurodegenerative pathways. Our findings highlight a role for CCR7+ CD4 T cells in CNS immune surveillance and their decline during chronic SIV-induced neuroinflammation highlights their responsiveness to neuroinflammatory processes. In Brief: Utilizing single-cell and spatial transcriptomics on adult rhesus brain, we uncover a unique CCR7+ CD4 T cell subset resembling central memory T cells (T CM ) within brain and border tissues, including skull bone marrow. Our findings show decreased frequencies of this subset during SIV- induced chronic neuroinflammation, emphasizing responsiveness of CCR7+ CD4 T cells to CNS disruptions. Highlights: CCR7+ CD4 T cells survey border and parenchymal CNS compartments during homeostasis; reduced presence of CCR7+ CD4 T cells in cerebrospinal fluid leads to immune activation, implying a role in neuroimmune homeostasis. CNS CCR7+ CD4 T cells exhibit phenotypic and functional features of central memory T cells (T CM ) including production of interleukin 2 and the capacity for rapid recall proliferation. Furthermore, CCR7+ CD4 T cells reside in the skull bone marrow. CCR7+ CD4 T cells are markedly decreased within the brain parenchyma during chronic viral neuroinflammation.