Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Pathol ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38849030

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease characterized by pulmonary fibroblast overactivation, resulting in the accumulation of abnormal extracellular matrix and lung parenchymal damage. Although the pathogenesis of IPF remains unclear, aging was proposed as the most prominent nongenetic risk factor. Previous studies have indicated that propionate metabolism undergoes reprogramming in the aging population, leading to the accumulation of the by-product methylmalonic acid (MMA). This study aims to explore alterations in propionate metabolism in IPF and the impact of the by-product MMA on pulmonary fibrosis. The present study revealed alterations in the expression of enzymes involved in propionate metabolism within IPF lung tissues, characterized by an increase in propionyl-CoA carboxylase and methylmalonyl-CoA epimerase expression, and a decrease in methylmalonyl-CoA mutase expression. Knockdown of methylmalonyl-CoA mutase, the key enzyme in propionate metabolism, in A549 cells induced a profibrotic phenotype and activated co-cultured fibroblasts. MMA exacerbated bleomycin-induced mouse lung fibrosis and induced a profibrotic phenotype in both epithelial cells and fibroblasts through activation of the canonical transforming growth factor-ß/Smad pathway. Overall, our findings unveil an alteration of propionate metabolism in IPF, leading to MMA accumulation, thus exacerbating lung fibrosis through promoting profibrotic phenotypic transitions via the canonical transforming growth factor-ß/Smad signaling pathway.

2.
Cell Mol Life Sci ; 81(1): 13, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38157020

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a fatal and devastating lung disease of unknown etiology, described as the result of multiple cycles of epithelial cell injury and fibroblast activation. Despite this impressive increase in understanding, a therapy that reverses this form of fibrosis remains elusive. In our previous study, we found that miR-29b has a therapeutic effect on pulmonary fibrosis. However, its anti-fibrotic mechanism is not yet clear. Recently, our study identified that F-Actin Binding Protein (TRIOBP) is one of the target genes of miR-29b and found that deficiency of TRIOBP increases resistance to lung fibrosis in vivo. TRIOBP knockdown inhibited the proliferation of epithelial cells and attenuated the activation of fibroblasts. In addition, deficiency of Trio Rho Guanine Nucleotide Exchange Factor (TRIO) in epithelial cells and fibroblasts decreases susceptibility to lung fibrosis. TRIOBP interacting with TRIO promoted abnormal epithelial-mesenchymal crosstalk and modulated the nucleocytoplasmic translocation of ß-catenin. We concluded that the miR-29b‒TRIOBP-TRIO-ß-catenin axis might be a key anti-fibrotic axis in IPF to regulate lung regeneration and fibrosis, which may provide a promising treatment strategy for lung fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , MicroRNAs , Animais , Humanos , Camundongos , beta Catenina/genética , beta Catenina/metabolismo , Fibroblastos/metabolismo , Fibrose , Fibrose Pulmonar Idiopática/patologia , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais/genética
3.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36430565

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and fatal interstitial lung disease with unknown etiology. Despite substantial progress in understanding the pathogenesis of pulmonary fibrosis and drug development, there is still no cure for this devastating disease. Fenbendazole (FBZ) is a benzimidazole compound that is widely used as an anthelmintic agent and recent studies have expanded the scope of its pharmacological effects and application prospect. This study demonstrated that FBZ treatment blunted bleomycin-induced lung fibrosis in mice. In vitro studies showed that FBZ inhibited the proliferation and migration of human embryo lung fibroblasts. Further studies showed that FBZ significantly inhibited glucose consumption, moderated glycolytic metabolism in fibroblasts, thus activated adenosine monophosphate-activated protein kinase (AMPK), and reduced the activation of the mammalian target of rapamycin (mTOR) pathway, thereby inhibiting transforming growth factor-ß (TGF-ß1)-induced fibroblast-to-myofibroblast differentiation and collagen synthesis. In summary, our data suggested that FBZ has potential as a novel treatment for pulmonary fibrosis.


Assuntos
Bleomicina , Fibrose Pulmonar Idiopática , Humanos , Camundongos , Animais , Bleomicina/efeitos adversos , Fenbendazol , Miofibroblastos , Fibroblastos , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA