Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Acoust Soc Am ; 155(1): 78-93, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38174966

RESUMO

The identification of nonlinear chirp signals has attracted notable attention in the recent literature, including estimators such as the variational mode decomposition and the nonlinear chirp mode estimator. However, most presented methods fail to process signals with close frequency intervals or depend on user-determined parameters that are often non-trivial to select optimally. In this work, we propose a fully adaptive method, termed the adaptive nonlinear chirp mode estimation. The method decomposes a combined nonlinear chirp signal into its principal modes, accurately representing each mode's time-frequency representation simultaneously. Exploiting the sparsity of the instantaneous amplitudes, the proposed method can produce estimates that are smooth in the sense of being piecewise linear. Furthermore, we analyze the decomposition problem from a Bayesian perspective, using hierarchical Laplace priors to form an efficient implementation, allowing for a fully automatic parameter selection. Numerical simulations and experimental data analysis show the effectiveness and advantages of the proposed method. Notably, the algorithm is found to yield reliable estimates even when encountering signals with crossed modes. The method's practical potential is illustrated on a whale whistle signal.

2.
J Acoust Soc Am ; 152(4): 2187, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36319234

RESUMO

Nonlinear group delay signals with frequency-varying characteristics are common in a wide variety of fields, for instance, structural health monitoring and fault diagnosis. For such applications, the signal is composed of multiple modes, where each mode may overlap in the frequency-domain. The resulting decomposition and forming of time-frequency representations of the nonlinear group delay modes is a challenging task. In this study, the nonlinear group delay signal is modelled in the frequency-domain. Exploiting the sparsity of the signal, we present the nonlinear group delay mode estimation technique, which forms the demodulation dictionary from the group delay. This method can deal with crossed modes and transient impulse signals. Furthermore, an augmented alternating direction multiplier method is introduced to form an efficient implementation. Numerical simulations and experimental data analysis show the effectiveness and advantages of the proposed method. In addition, the included analysis of Lamb waves as well as of a bearing signal show the method's potential for structural health monitoring and fault diagnosis.

3.
NMR Biomed ; 32(5): e4067, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30811722

RESUMO

Quantitative susceptibility mapping (QSM) is a meaningful MRI technique owing to its unique relation to actual physical tissue magnetic properties. The reconstruction of QSM is usually decomposed into three sub-problems, which are solved independently. However, this decomposition does not conform to the causes of the problems, and may cause discontinuity of parameters and error accumulation. In this paper, a fast reconstruction method named fast TFI based on total field inversion was proposed. It can accelerate the total field inversion by using a specially selected preconditioner and advanced solution of the weighted L0 regularization. Due to the employment of an effective model, the proposed method can efficiently reconstruct the QSM of brains with lesions, where other methods may encounter problems. Experimental results from simulation and in vivo data verified that the new method has better reconstruction accuracy, faster convergence ability and excellent robustness, which may promote clinical application of QSM.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Gadolínio/química , Humanos , Processamento de Imagem Assistida por Computador , Modelos Lineares , Imagens de Fantasmas
4.
Magn Reson Med ; 80(5): 2202-2214, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29687915

RESUMO

PURPOSE: An end-to-end deep convolutional neural network (CNN) based on deep residual network (ResNet) was proposed to efficiently reconstruct reliable T2 mapping from single-shot overlapping-echo detachment (OLED) planar imaging. METHODS: The training dataset was obtained from simulations that were carried out on SPROM (Simulation with PRoduct Operator Matrix) software developed by our group. The relationship between the original OLED image containing two echo signals and the corresponding T2 mapping was learned by ResNet training. After the ResNet was trained, it was applied to reconstruct the T2 mapping from simulation and in vivo human brain data. RESULTS: Although the ResNet was trained entirely on simulated data, the trained network was generalized well to real human brain data. The results from simulation and in vivo human brain experiments show that the proposed method significantly outperforms the echo-detachment-based method. Reliable T2 mapping with higher accuracy is achieved within 30 ms after the network has been trained, while the echo-detachment-based OLED reconstruction method took approximately 2 min. CONCLUSION: The proposed method will facilitate real-time dynamic and quantitative MR imaging via OLED sequence, and deep convolutional neural network has the potential to reconstruct maps from complex MRI sequences efficiently.


Assuntos
Aprendizado Profundo , Imagem Ecoplanar/métodos , Processamento de Imagem Assistida por Computador/métodos , Adulto , Algoritmos , Encéfalo/diagnóstico por imagem , Simulação por Computador , Humanos , Imagens de Fantasmas
5.
IEEE Trans Image Process ; 32: 2493-2507, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37099471

RESUMO

Self-supervised video-based action recognition is a challenging task, which needs to extract the principal information characterizing the action from content-diversified videos over large unlabeled datasets. However, most existing methods choose to exploit the natural spatio-temporal properties of video to obtain effective action representations from a visual perspective, while ignoring the exploration of the semantic that is closer to human cognition. For that, a self-supervised Video-based Action Recognition method with Disturbances called VARD, which extracts the principal information of the action in terms of the visual and semantic, is proposed. Specifically, according to cognitive neuroscience research, the recognition ability of humans is activated by visual and semantic attributes. An intuitive impression is that minor changes of the actor or scene in video do not affect one person's recognition of the action. On the other hand, different humans always make consistent opinions when they recognize the same action video. In other words, for an action video, the necessary information that remains constant despite the disturbances in the visual video or the semantic encoding process is sufficient to represent the action. Therefore, to learn such information, we construct a positive clip/embedding for each action video. Compared to the original video clip/embedding, the positive clip/embedding is disturbed visually/semantically by Video Disturbance and Embedding Disturbance. Our objective is to pull the positive closer to the original clip/embedding in the latent space. In this way, the network is driven to focus on the principal information of the action while the impact of sophisticated details and inconsequential variations is weakened. It is worthwhile to mention that the proposed VARD does not require optical flow, negative samples, and pretext tasks. Extensive experiments conducted on the UCF101 and HMDB51 datasets demonstrate that the proposed VARD effectively improves the strong baseline and outperforms multiple classical and advanced self-supervised action recognition methods.


Assuntos
Algoritmos , Reconhecimento Automatizado de Padrão , Humanos , Reconhecimento Automatizado de Padrão/métodos , Semântica
6.
IEEE Trans Neural Netw Learn Syst ; 34(11): 9029-9039, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35286266

RESUMO

Optimization algorithms are of great importance to efficiently and effectively train a deep neural network. However, the existing optimization algorithms show unsatisfactory convergence behavior, either slowly converging or not seeking to avoid bad local optima. Learning rate dropout (LRD) is a new gradient descent technique to motivate faster convergence and better generalization. LRD aids the optimizer to actively explore in the parameter space by randomly dropping some learning rates (to 0); at each iteration, only parameters whose learning rate is not 0 are updated. Since LRD reduces the number of parameters to be updated for each iteration, the convergence becomes easier. For parameters that are not updated, their gradients are accumulated (e.g., momentum) by the optimizer for the next update. Accumulating multiple gradients at fixed parameter positions gives the optimizer more energy to escape from the saddle point and bad local optima. Experiments show that LRD is surprisingly effective in accelerating training while preventing overfitting.

7.
Artigo em Inglês | MEDLINE | ID: mdl-37027757

RESUMO

Faithful measurement of perceptual quality is of significant importance to various multimedia applications. By fully utilizing reference images, full-reference image quality assessment (FR-IQA) methods usually achieves better prediction performance. On the other hand, no-reference image quality assessment (NR-IQA), also known as blind image quality assessment (BIQA), which does not consider the reference image, makes it a challenging but important task. Previous NR-IQA methods have focused on spatial measures at the expense of information in the available frequency bands. In this paper, we present a multiscale deep blind image quality assessment method (BIQA, M.D.) with spatial optimal-scale filtering analysis. Motivated by the multi-channel behavior of the human visual system and contrast sensitivity function, we decompose an image into a number of spatial frequency bands by multiscale filtering and extract features for mapping an image to its subjective quality score by applying convolutional neural network. Experimental results show that BIQA, M.D. compares well with existing NR-IQA methods and generalizes well across datasets.

8.
IEEE Trans Med Imaging ; PP2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38015692

RESUMO

The generation of synthetic data using physics-based modeling provides a solution to limited or lacking real-world training samples in deep learning methods for rapid quantitative magnetic resonance imaging (qMRI). However, synthetic data distribution differs from real-world data, especially under complex imaging conditions, resulting in gaps between domains and limited generalization performance in real scenarios. Recently, a single-shot qMRI method, multiple overlapping-echo detachment imaging (MOLED), was proposed, quantifying tissue transverse relaxation time (T2) in the order of milliseconds with the help of a trained network. Previous works leveraged a Bloch-based simulator to generate synthetic data for network training, which leaves the domain gap between synthetic and real-world scenarios and results in limited generalization. In this study, we proposed a T2 mapping method via MOLED from the perspective of domain adaptation, which obtained accurate mapping performance without real-label training and reduced the cost of sequence research at the same time. Experiments demonstrate that our method outshined in the restoration of MR anatomical structures.

9.
IEEE Trans Pattern Anal Mach Intell ; 45(3): 3677-3694, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35648876

RESUMO

Domain Adaptive Object Detection (DAOD) focuses on improving the generalization ability of object detectors via knowledge transfer. Recent advances in DAOD strive to change the emphasis of the adaptation process from global to local in virtue of fine-grained feature alignment methods. However, both the global and local alignment approaches fail to capture the topological relations among different foreground objects as the explicit dependencies and interactions between and within domains are neglected. In this case, only seeking one-vs-one alignment does not necessarily ensure the precise knowledge transfer. Moreover, conventional alignment-based approaches may be vulnerable to catastrophic overfitting regarding those less transferable regions (e.g., backgrounds) due to the accumulation of inaccurate localization results in the target domain. To remedy these issues, we first formulate DAOD as an open-set domain adaptation problem, in which the foregrounds and backgrounds are seen as the "known classes" and "unknown class" respectively. Accordingly, we propose a new and general framework for DAOD, named Foreground-aware Graph-based Relational Reasoning (FGRR), which incorporates graph structures into the detection pipeline to explicitly model the intra- and inter-domain foreground object relations on both pixel and semantic spaces, thereby endowing the DAOD model with the capability of relational reasoning beyond the popular alignment-based paradigm. FGRR first identifies the foreground pixels and regions by searching reliable correspondence and cross-domain similarity regularization respectively. The inter-domain visual and semantic correlations are hierarchically modeled via bipartite graph structures, and the intra-domain relations are encoded via graph attention mechanisms. Through message-passing, each node aggregates semantic and contextual information from the same and opposite domain to substantially enhance its expressive power. Empirical results demonstrate that the proposed FGRR exceeds the state-of-the-art performance on four DAOD benchmarks.

10.
IEEE Trans Neural Netw Learn Syst ; 34(3): 1513-1523, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34460396

RESUMO

The goal of hyperspectral image fusion (HIF) is to reconstruct high spatial resolution hyperspectral images (HR-HSI) via fusing low spatial resolution hyperspectral images (LR-HSI) and high spatial resolution multispectral images (HR-MSI) without loss of spatial and spectral information. Most existing HIF methods are designed based on the assumption that the observation models are known, which is unrealistic in many scenarios. To address this blind HIF problem, we propose a deep learning-based method that optimizes the observation model and fusion processes iteratively and alternatively during the reconstruction to enforce bidirectional data consistency, which leads to better spatial and spectral accuracy. However, general deep neural network inherently suffers from information loss, preventing us to achieve this bidirectional data consistency. To settle this problem, we enhance the blind HIF algorithm by making part of the deep neural network invertible via applying a slightly modified spectral normalization to the weights of the network. Furthermore, in order to reduce spatial distortion and feature redundancy, we introduce a Content-Aware ReAssembly of FEatures module and an SE-ResBlock model to our network. The former module helps to boost the fusion performance, while the latter make our model more compact. Experiments demonstrate that our model performs favorably against compared methods in terms of both nonblind HIF fusion and semiblind HIF fusion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA