Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Nano Lett ; 24(31): 9720-9726, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39051601

RESUMO

Surface plasmons excited via inelastic tunnelling have led to plasmon light sources with small footprints and ultrafast response speeds, which are favored by integrated optical circuits. Self-assembled monolayers of organic molecules function as highly tunable tunnel barriers with novel functions. However, limited by the low effective contact between the liquid metal electrode and the self-assembled monolayers, it is quite challenging to obtain molecular plasmon light sources with high density and uniform emission. Here, by combining lithographic patterning with a solvent treatment method, we have demonstrated electrically driven deterministic plasmon emission from arrays of molecular tunnel junctions. The solvent treatment could largely improve the effective contact from 9.6% to 48% and simultaneously allow the liquid metal to fill into lithographically patterned micropore structures toward deterministic plasmon emission with desired patterns. Our findings open up new possibilities for tunnel junction-based plasmon light sources, laying the foundation for electrically driven light-emitting metasurfaces.

2.
Opt Lett ; 47(17): 4524-4527, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36048695

RESUMO

As the strong light-matter interaction between molecular vibrations and mid-infrared optical resonant modes, vibrational strong coupling (VSC) has the potential to modify the intrinsic chemistry of molecules, leading to the control of ground-state chemical reactions. Here, by using quartz as an epsilon-near-zero (ENZ) substrate, we have realized VSC between organic molecular vibrations and mid-infrared plasmons on metallic antennas. The ENZ substrate enables sharp mid-infrared plasmonic resonances (Q factor ∼50) which efficiently couple to the molecular vibrations of polymethyl methacrylate (PMMA) molecules with prominent mode splitting. The coupling strength is proportional to the square root of the thickness of the PMMA layer and reaches the VSC regime with a thickness of ∼300 nm. The coupling strength also depends on the polarization of the incident light, illustrating an additional way to control the molecule-plasmon coupling. Our findings provide a new, to the best of our knowledge, possibility to realize VSC with metallic antennas and pave the way to increase the sensitivity of molecular vibrational spectroscopy.

3.
ACS Appl Mater Interfaces ; 16(11): 14357-14363, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38440977

RESUMO

Infrared absorption provides the intrinsic vibrational information on chemical bonds, which is important for identifying molecular moieties. To enhance the sensitivity of infrared absorption, plasmonic antennas have been widely used to localize and concentrate mid-infrared light into nanometer-scale hotspots at desired wavelengths. Here, instead of inorganic plasmonic antennas, we have demonstrated surface-enhanced infrared absorption (SEIRA) using single plasmonic antennas based on a conducting polymer. With commercially available PEDOT:PSS (poly(ethylenedioxythiophene):poly(styrenesulfonate)), the organic plasmonic antennas are in the fashion of single PEDOT:PSS micropillars. The plasmonic resonance of single PEDOT:PSS micropillar antennas can be easily tuned by the micropillar diameter or by the interantenna gap across the mid-infrared frequencies. These organic plasmonic antennas show the ability to enhance the molecular vibrations of CBP (4,4'-bis(N-carbazolyl)-1,1'-biphenyl) molecules with a thickness of about 50 nm, illustrating the good SEIRA sensitivity (with SEIRA sensitivity up to ∼7800) at the single antenna level. Our findings provide another material choice for mid-infrared plasmonic antennas toward SEIRA applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA