Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 271(Pt 1): 132400, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759851

RESUMO

Alternative splicing is a prevalent phenomenon in testicular tissues. Due to the low assembly accuracy of short-read RNA sequencing technology in analyzing post-transcriptional regulatory events, full-length (FL) transcript sequencing is highly demanded to accurately determine FL splicing variants. In this study, we performed FL transcriptome sequencing of testicular tissues from 0.5, 1.5, 2.5, and 4-year-old yaks and 4-year-old cattle-yaks using Oxford Nanopore Technologies. The obtained sequencing data were predicted to have 47,185 open reading frames (ORFs), including 26,630 complete ORFs, detected 7645 fusion transcripts, 15,355 alternative splicing events, 25,798 simple sequence repeats, 7628 transcription factors, and 35,503 long non-coding RNAs. A total of 40,038 novel transcripts were obtained from the sequencing data, and the proportion was almost close to the number of known transcripts identified. Structural analysis and functional annotation of these novel transcripts resulted in the successful annotation of 9568 transcripts, with the highest and lowest annotation numbers in the Nr and KOG databases, respectively. Weighted gene co-expression network analysis revealed the key regulatory pathways and hub genes at various stages of yak testicular development. Our findings enhance our comprehension of transcriptome complexity, contribute to genome annotation refinement, and provide foundational data for further investigations into male sterility in cattle-yaks.


Assuntos
Anotação de Sequência Molecular , Testículo , Transcriptoma , Animais , Masculino , Bovinos , Testículo/metabolismo , Testículo/crescimento & desenvolvimento , Transcriptoma/genética , Fases de Leitura Aberta/genética , Perfilação da Expressão Gênica/métodos , Processamento Alternativo , RNA Longo não Codificante/genética , Redes Reguladoras de Genes , Análise de Sequência de RNA/métodos
2.
Foods ; 13(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39123555

RESUMO

In order to investigate the composition and differences in volatile organic compounds (VOCs) in yak and cattle-yak meat and determine the key metabolites and metabolic pathways related to flavor formation. In this study, the VOCs and non-volatile metabolites in Longissimus dorsi muscle of two groups of samples were detected and analyzed by gas chromatography-ion migration spectrometry (GC-IMS) and gas chromatography-mass spectrometry (GC-MS). The results showed that 31 VOCs were identified by GC-IMS, including 5 alcohols, 5 ketones, 5 esters, 3 aldehydes, 2 furans, 2 hydrocarbons, 1 amine, 1 acid, 1 thiazole, 1 pyrazine, and 5 others. Most of them were alcohols, ketones, esters, and aldehydes. A total of 75 non-volatile metabolites with significant differences were obtained by GC-MS screening, among which amino acid contents such as serine, glycine, phenylalanine, and aspartic acid were significantly up-regulated in cattle-yak, and glutamic acid and tyrosine were significantly up-regulated in yak. The non-volatile differential metabolites in the two groups were significantly enriched in the metabolic pathways of arginine biosynthesis and oxidative phosphorylation. By combining GC-IMS and GC-MS, this study comprehensively and intuitively reflected the differences in VOCs between yak and cattle-yak meat, and clarified the metabolomic reasons for the differences in VOCs, so as to provide a theoretical basis for meat quality improvement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA