Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Plant Physiol ; 171(4): 2445-57, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27325664

RESUMO

Because of the potential importance of algae for green biotechnology, considerable effort has been invested in understanding their responses to nitrogen deprivation. The most frequently invoked reasons proposed for the accumulation of high cellular levels of triacylglycerol (TAG) and starch are variants of what may be termed the "overflow hypothesis." According to this, growth inhibition results in the rate of photosynthetic energy and/or carbon input exceeding cellular needs; the excess input is directed into the accumulation of TAG and/or starch to prevent damage. This study was aimed at providing a quantitative dataset and analysis of the main energy and carbon flows before and during nitrogen deprivation in a model system to assess alternative explanations. Cellular growth, biomass, starch, and lipid levels as well as several measures of photosynthetic function were recorded for cells of Chlamydomonas reinhardtii cultured under nine different autotrophic, mixotrophic, and heterotrophic conditions during nutrient-replete growth and for the first 4 d of nitrogen deprivation. The results of a (13)C labeling time course indicated that in mixotrophic culture, starch is predominantly made from CO2 and fatty acid synthesis is largely supplied by exogenous acetate, with considerable turnover of membrane lipids, so that total lipid rather than TAG is the appropriate measure of product accumulation. Heterotrophic cultures accumulated TAG and starch during N deprivation, showing that these are not dependent on photosynthesis. We conclude that the overflow hypothesis is insufficient and suggest that storage may be a more universally important reason for carbon compound accumulation during nutrient deprivation.


Assuntos
Carbono/metabolismo , Chlamydomonas reinhardtii/metabolismo , Metabolismo Energético , Amido/metabolismo , Triglicerídeos/metabolismo , Processos Autotróficos , Biomassa , Processos Heterotróficos , Nitrogênio/metabolismo , Fotossíntese
2.
Plant Physiol ; 167(2): 558-73, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25489023

RESUMO

The accumulation of carbon storage compounds by many unicellular algae after nutrient deprivation occurs despite declines in their photosynthetic apparatus. To understand the regulation and roles of photosynthesis during this potentially bioenergetically valuable process, we analyzed photosynthetic structure and function after nitrogen deprivation in the model alga Chlamydomonas reinhardtii. Transcriptomic, proteomic, metabolite, and lipid profiling and microscopic time course data were combined with multiple measures of photosynthetic function. Levels of transcripts and proteins of photosystems I and II and most antenna genes fell with differing trajectories; thylakoid membrane lipid levels decreased, while their proportions remained similar and thylakoid membrane organization appeared to be preserved. Cellular chlorophyll (Chl) content decreased more than 2-fold within 24 h, and we conclude from transcript protein and (13)C labeling rates that Chl synthesis was down-regulated both pre- and posttranslationally and that Chl levels fell because of a rapid cessation in synthesis and dilution by cellular growth rather than because of degradation. Photosynthetically driven oxygen production and the efficiency of photosystem II as well as P700(+) reduction and electrochromic shift kinetics all decreased over the time course, without evidence of substantial energy overflow. The results also indicate that linear electron flow fell approximately 15% more than cyclic flow over the first 24 h. Comparing Calvin-Benson cycle transcript and enzyme levels with changes in photosynthetic (13)CO2 incorporation rates also pointed to a coordinated multilevel down-regulation of photosynthetic fluxes during starch synthesis before the induction of high triacylglycerol accumulation rates.


Assuntos
Chlamydomonas reinhardtii/fisiologia , Nitrogênio/deficiência , Fotossíntese , Ciclo do Carbono , Isótopos de Carbono , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/ultraestrutura , Clorofila/metabolismo , Regulação para Baixo/genética , Metabolismo Energético , Fluorescência , Regulação da Expressão Gênica de Plantas , Lipídeos/análise , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Força Próton-Motriz , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Amido/biossíntese , Tilacoides/metabolismo , Tilacoides/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA